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Abstract. IFN-y is a key immunomodulatory cytokine primarily secreted by activated T lymphocytes,
NK cells, NKT cells, and dendritic cells. The IFN-y protein is encoded by the IFNG gene located on
chromosome 9g14.3 and plays a central role in host immune responses. The current study employed an
integrated computational approach to predict deleterious missense SNPs of the IFN-y gene. These
variants potentially disrupt the structural integrity and biological activity of IFN-y, contributing to
aberrant immune responses implicated in tumorigenesis and chronic inflammation. To assess the
functional consequences of these mutations, molecular docking analyses were conducted. Through
comprehensive screening, 12 deleterious nsSNPs were identified, localized within non-synonymous
regions. SOPMA revealed that the IFN-y protein is predominantly a-helical, constituting about 66.27% of
the total secondary structure. Our results show high disorder scores for the G161R, R152Q, M1L, and
A164S mutants, suggesting a loss of structural order, which may negatively impact protein function.
Structural modeling was performed using AlphaFold, followed by validation with the SAVES v6.0
server. K28T, Y37C, and Y76F induced marked conformational changes involved in receptor binding, as
evidenced by high RMSD values. Our results emphasize Laminin, Tamoxifen, Fulvestrant, Melanin,
Parecoxib, and Rofecoxib. Both Laminin and Melanin demonstrated strong binding affinities with native
and mutant IFN-y structures, engaging crucial residues such as Phell5, Glull6, Phel05, and Val73.
These residues are crucial for ligand binding and cytokine function, highlighting their therapeutic
importance. Our findings provide insights for the development of targeted therapies for IFN-y-related
disorders, including autoimmune diseases, cancer, and infectious conditions. The novelty of this study lies
in its comprehensive analysis of mutant IFN-y forms, paving the way for precision medicine approaches
tailored to genetically diverse populations. Further experimental validation is necessary to substantiate
these findings and evaluate their clinical significance.
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Introduction

Single-nucleotide polymorphisms (SNPs) in the interferon-gamma (IFN-y) gene are
key tumor progression and suppression regulators. This gene is primarily expressed in
immune cells such as antigen-activated T cells, natural killer (NK) cells, natural killer T
(NKT) cells, and dendritic cells (DCs). Moreover, the production of IFN-y can be
indirectly triggered by lipopolysaccharides (LPS) and certain viral infections. In 1957,
the term "Interferon™ (IFN) was first coined to describe a substance that inhibited the
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spread of the influenza virus in an experimental study conducted on mice (lsaacs and
Lindenmann, 1957). This discovery led to the identification of a new family of proteins
known as IFNs, which are classified into three types; Type | (IFN-a), Type II (IFN-y),
and Type I11, also referred to as IFN-A including IFN-A1, IFN-A2, and IFN-A3, formerly
known as IL-28A and IL-28B (Khanna and Gerriets, 2020). Type | IFN genes are
present in all vertebrates and are generally large and intronless. IFN-al and IFN-al3
share a high degree of sequence similarity, while IFN-B, IFN-®, IFN-k, and IFN-€ exist
as single genes with minimal amino acid homology among them. The 13 IFN-o genes
encode 12 structurally identical IFN-a proteins. In amphibians, IFN genes may either be
intronless or contain introns (Kotenko and Durbin, 2017; Sang et al., 2016; Qi et al.,
2010). The IFN-y gene is situated on chromosome 12q14.1 and comprises 4 exons and 3
introns, covering approximately 9.6 Kb between base pairs 57,700,000 and 67,300,000.
It encodes interferon-gamma (IFN-y), a vital cytokine involved in immune defense.
IFN-v is initially synthesized as a monomer with 146 amino acids but undergoes post-
translational modifications to form a functional homodimer consisting of 166 amino
acids (Reynard, 2002). Structurally, it belongs to the type Il IFN family and features a
helical arrangement with 6 a-helices necessary for receptor interaction. The regulation
of IFN-y expression is influenced by promoter regions and untranslated regions (UTRs),
which provide binding sites for transcription factors (STAT1, NF-kB, and IRF-1). These
elements play a key role in controlling IFN-y production in response to immune
challenges, including infections and inflammatory conditions (Savan et al., 2009). One
distinctive characteristic of IFN-y is its conserved C-terminal tail, which is present
across various species such as fish, frogs, chickens, and mammals. This region contains
lysine and arginine residues, which contribute to its biological function (Griggs et al.,
1992).

Genome-wide association studies (GWAS) have identified several SNPs in the IFN-y
gene that can lead to altered immune responses, increasing susceptibility to various
infectious diseases, autoimmune disorders, and inflammatory conditions (Kaur et al.,
2019). According to data from the Catalogue of Somatic Mutations in Cancer
(COSMIC), among 49,967 unique samples analyzed, 243 unique samples exhibited
IFN-y mutations. These mutations can impact [FN-y production, receptor binding, and
downstream signaling pathways, ultimately disrupting immune regulation. Notably, the
rs1861494 SNP has been linked to leprosy, asthma, and non-Hodgkin lymphoma.
Moreover, the rs2069718 SNP has been associated with critical cases of COVID-19,
suggesting a potential role in disease severity. The rs2430561 SNP has been implicated
in susceptibility to tuberculosis, highlighting its significance in immune response
regulation (Pacheco and Moraes, 2009). These mutations can impact IFN-y production,
receptor binding, and downstream signaling pathways, ultimately disrupting immune
regulation. Loss-of-function mutations weaken the body's ability to combat infections
such as tuberculosis and Salmonella, increasing the risk of chronic diseases such as
Mendelian susceptibility to mycobacterial disease (MSMD). In contrast, gain-of-
function mutations cause excessive IFN-y production, triggering chronic inflammation
linked to autoimmune disorders (lupus and rheumatoid arthritis). Some mutations
impair IFN-y receptor interactions, leading to immunodeficiency. In cancer, IFN-y
mutations can either suppress tumor growth or contribute to chronic inflammation,
promoting cancer progression. Understanding these genetic changes is essential for
developing targeted treatments for infectious, autoimmune, and cancer-related
conditions. The present study is to systematically analyse and predict the impact of
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missense SNPs in the human IFN-y gene using a comprehensive array of computational
tools. By assessing the functional and structural consequences of these genetic
variations, this study aims to identify potentially deleterious mutations that may
influence immune regulation and disease susceptibility. The findings will contribute to a
deeper understanding of IFN-y-associated genetic variations and their role in infectious
diseases, autoimmune disorders, and cancer, ultimately aiding in the development of
targeted therapeutic strategies.

Materials and Methods
Collection and functional characterization of variants

The FASTA sequence of the human IFN-y gene (NC000012_12) was retrieved from
the NCBI database, with its corresponding UniProt ID P01579. Additionally, SNP data
for IFN-y were obtained from the dbSNP-NCBI database for further computational
analysis. Several bioinformatics tools were utilized to evaluate the potential functional
consequences of variants. SNPnexus integrates multiple predictive algorithms, including
SIFT and PolyPhen. SIFT classifies variants as tolerated or deleterious, with a threshold
score of <0.05 indicating a deleterious effect (Fareed et al., 2022; Hasnain et al., 2020;
AbdulAzeez, S., Borgio, 2016; Sim et al., 2012). PolyPhen evaluates variants as benign,
possibly damaging, or probably damaging, with scores ranging from 0 to 1, where
values closer to 1 indicate a higher likelihood of a damaging effect (Hasnain et al.,
2020; Mahmud et al., 2016; Jahandideh and Zhi, 2014). The Protein Variation Effect
Analyzer (PROVEAN) predicts the impact of amino acid substitutions or indels on
protein function using sequence clustering and alignment-based scoring. Variants with a
score below -2.5 are classified as deleterious, while those above this threshold are
considered neutral (Fareed et al., 2022; Mahmud et al., 2016; Choi et al., 2012).
Polymorphism Phenotyping v2 (PolyPhen-2) utilizes physical properties and
comparative evolutionary analysis to classify variants as benign, possibly damaging, or
probably damaging (Adzhubei et al., 2013). Consensus DELeteriousness (CONDEL)
integrates the results of multiple predictive algorithms to assess the impact of single-
nucleotide variants on protein function. It provides a consensus score, improving the
accuracy of deleteriousness predictions (Gnad et al., 2013).

Assessment of variants for disease linkages and protein stability

The SNP and GO tool is used for predicting disease-associated amino acid changes
in protein by utilizing the UniProt accession number and variant position to classify
variants, with probability values >0.5 indicating disease-associated SNPs (Fareed et al.,
2022; Hasnain et al., 2020; AbdulAzeez and Borgio, 2016; Magesh and George Priya
Doss, 2014). P-MUT assesses the pathological impact of single amino acid variants in
human proteins, achieving approximately 80% accuracy (L6pez-Ferrando et al., 2017).
PhD-SNP with a 78% accuracy rate, predicts disease-associated SNPs by ranking them
on a scale of 0 to 9, to enhance the reliability of SNP classification through
computational analysis. Meta-SNP predicts the impact of nsSNVs on protein function
by integrating multiple tools. It assigns a score from 0 to 1, where values above 0.5
indicate disease-associated mutations (Fareed et al., 2022; Hasnain et al., 2020; Arshad
et al., 2018; Jahandideh, S., Zhi; 2014; Magesh and George Priya Doss, 2014). The
impact of mutations on protein stability can be assessed by analyzing changes in free
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energy. I-Mutant 2.0 predicts stability changes due to nsSNPs with 77% accuracy,
providing a reliability index (RI) from 0 to 10 (Fareed et al., 2022; Hasnain et al., 2020;
Capriotti et al., 2006).

Secondary structure and solvent accessibility analysis

The Self-Optimized Prediction Method with Alignment (SOPMA) tool that predicts
protein secondary structures by analyzing amino acid sequences (Santhoshkumar and
Yusuf, 2020). It identifies regions likely to form a-helices, B-sheets, turns, or coils,
offering insights into protein architecture. SOPMA enhances prediction accuracy by
incorporating information from multiple sequence alignments of homologous proteins
(Angamuthu and Piramanayagam, 2017; Geourjon, C., Deleage, 1995). NetSurfP-2.0
predicts key structural features of proteins, such as solvent accessibility, secondary
structure, disorder regions, and backbone dihedral angles, by analyzing their amino acid
sequences. It utilizes a combination of convolutional and bi-directional long short-term
memory neural networks trained on solved protein structures. By inputting a protein
sequence, researchers can obtain detailed insights into its structural characteristics,
which are essential for understanding interaction interfaces and functional regions
within the fully folded protein (Khan et al., 2021).

Structure prediction of IFN- y

The Protein Data Bank (PDB) entries for IFN-y structures, such as 1HIG and 1EKU,
represent truncated versions of the protein, each consisting of 143 amino acids. These
truncated forms were utilized to facilitate crystallization and structural analysis.
Currently, no PDB structure encompasses the full-length 166 amino acid sequence of
the IFN-y protein. Computational tools were employed to model the full-length IFN-y
protein to achieve accurate structural predictions and analyses. AlphaFold was utilized
to predict the three-dimensional coordinates of all heavy atoms in the protein based
solely on its primary amino acid sequence (Jumper et al., 2021). The resulting structure
was visualized using PyMOL, which simplified the depiction of the 3D conformation
and allowed for the introduction of specific amino acid mutations. To enhance the
accuracy of these models (30). ModRefiner was employed for structural refinement (Xu
and Zhang, 2011). The quality of the refined models was assessed using the SAVES
server, incorporating tools such as PROCHECK to generate Ramachandran plots that
evaluate the stereochemical quality of the protein structures; a high percentage of
residues in favored regions indicates good structural quality (Mahmud et al., 2016;
Colovos and Yeates, 1993). Finally, TM-align was used to compare native and mutated
protein structures, calculating metrics such as the TM-score and root-mean-square
deviation (RMSD); a TM-score closer to 1 signifies high structural similarity, while a
higher RMSD indicates greater differences between structures. Collectively, these
computational approaches provide a comprehensive framework for modeling, refining,
validating, and comparing protein structures, offering valuable insights into the
structural and functional implications of IFN-y and its variants (Zhang and Skolnick.
2005; Zhang and Skolnick, 2004; Carugo and Pongor, 2001).

Virtual screening and molecular docking

To determine which of the listed compounds could potentially modulate the IFN-y
gene through molecular docking, a comprehensive computational analysis is required.
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The 3D structures of the compounds can be sourced from PubChem, DrugBank, or
ZINC database. Molecular docking studies using PyRx can then assess the binding
affinity of these compounds to IFN-y, providing insights into their potential interactions
(Dallakyan and Olson, 2014; Trott, O., Olson, 2010; Morris et al., 2008). Among the
listed compounds, S-Adenosylmethionine is known to regulate immune responses and
cytokine expression, suggesting a possible role in IFN-y modulation. Statins, including
Simvastatin and Atorvastatin, have been reported to suppress IFN-y-mediated
inflammation, making them relevant candidates. Tamoxifen is commonly used in cancer
therapy and may influence IFN-y signaling pathways. Tetracycline, with its anti-
inflammatory properties, could also affect IFN-y expression. Additionally, COX-2
inhibitors such as Parecoxib and Rofecoxib are known to modulate immune responses,
which may indirectly impact IFN-y levels. To confirm their potential as IFN-y
modulators, further molecular docking and interaction studies are needed, analyzing
parameters such as binding energy, hydrogen bonding, and hydrophobic interactions
using Discovery Studio (Adeniji et al., 2020).

Results and Discussion
Variants collection

The human IFN-y gene contains a total of 3,419 single-nucleotide polymorphisms
(SNPs), and the corresponding protein sequences were retrieved from the NCBI
database and analyzed using various computational algorithms. Among these SNPs, 77
were identified as non-synonymous SNPs (nsSNPs) affecting the IFN-y protein.
Additionally, the dataset included SNPs located in different regions: 146 in the
untranslated regions (UTRs), 42 synonymous, 98 in the 5" upstream region, 1707 in
non-coding regions, 919 in coding regions, and 58 in the 3’ downstream region (Figure
1). For further investigation, the identified nsSNPs in the IFN-y protein were selected to
assess their potential effects on protein structure, stability, and functional activity.

S Upstream

Coding 3' Downstream
Non-Coding

Intronic @ q Synonymot

ENSEMBL
3419

Figure 1. Outcome of SNPnexus server.
Download functionality detrimental variants
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SNPnexus identified a total of 1,891 SNPs within the IFN-y gene, each assigned a
unique index. Using the SIFT algorithm, 26 non-synonymous SNPs (nsSNPs) were
predicted to be deleterious, while 44 were considered tolerated (Figure 2). Further
analysis with the PolyPhen-2 tool revealed 12 nsSNPs as probably damaging, 11 as
possibly damaging, and 47 as benign. PolyPhen-2 scores range from 0 to 1, with values
closer to 1 indicating higher potential for functional damage and values near 0
representing a likely benign impact. Additionally, a confidence score between 0 and
0.02 was assigned to 12 nsSNPs, while 9 nsSNPs with a score of 0 were classified as
highly deleterious (Table 1). Among these, 12 variants G161R (rs769209772), R152Q
(rs377736305), R130C (rs755519988), K78T (rs761801101), Y76F (rs867244009),
I72T  (rs564666653), 172N (rs564666653), V45E  (rs1009245499), M1L
(rs1304053808), D114Y (rs1178805738), Y37C (rs1477303678), and A164S
(rs369578383) were consistently predicted to be harmful by both SIFT and PolyPhen.
These missense SNPs were further validated through comprehensive analysis using
additional in silico tools, including PPh2, PROVEAN and ConDEL (Table 1).
Additionally, PROVEAN analysis identified 10 nsSNPs in the human IFN-y gene as
deleterious, whereas M1L (-1.921) and A164S (-0.856) were predicted to be neutral
(Table 1). Moreover, 172T, R130C, and Y37C exhibited the most damaging effects,
with PROVEAN scores of -6.410, -6.301, and -6.158, respectively. According to
PolyPhen-2 (PPh2), 11 nsSNPs were predicted to be probably damaging to the IFN-y
protein, with scores ranging from 0.818 to 1.000. The A164S variant was considered
possibly damaging, with a score of 0.818. Furthermore, ConDEL uses a consensus
weighted scoring approach, classifying 9 nsSNPs as deleterious and G161R, M1L, and
A164S as neutral. The comprehensive functional deleterious consequences of these
nsSNPs are detailed in Table 1.

Table 1. List of deleterious IFN-y variations found by SIFT> PolyPhen>PROVEAN>PPh2
and ConDEL algorithms.

rs 1D Sub SIFT PolyPhen PROVEAN PPh2 ConDEL

S E S E S E S E S E
1s769209772 G—-R 161 0 D 0923 PD D -3.04 PD 0.992 0.471646 N
rs377736305 R—Q 152 0 D 0967 PD D -2.63 PD 1 0.584477 D
rs755519988 R—C 130 0 D 0995 PD D -6.301 PD 1 0.588284 D
rs761801101 K—T78 0 D 0984 PD D -4.615 PD 0.999 0.577837 D
rs867244009 Y—-F 76 0 D 0998 PD D -3.63 PD 1 0.656726 D
r1s564666653 I-T72 0 D 0992 PD D -4.52 PD 0.998 0.613629 D
rs564666653 I-N72 0 D 0997 PD D -6.41 PD 1 0.614522 D
rs1009245499 V—E 45 0 D 0963 PD D -4.324 PD 0.996 0.594845 D
rs1304053808 M—L 1 0 D 0956 PD D -1.921 PD 0.984 0.33308 N
rs1178805738 D—Y 114 0.01 D 0987 PD D -4.244 PD 1 0.576615 D
rs1477303678 Y—C37 0.01 D 0991 PD D -6.158 PD 1 0.584235 D
rs369578383 A—S 164 0.02 D 0991 PD D -0.856 Pos 0.818 0.442043 N

Note: Sub=Substitutions; D=Deleterious; E=Effect; N=Neutral; S=Score; PD=Probably
Damaging; Pos=Possibly Damaging.
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Figure 2. Findings of SIFT and PolyPhen algorithms.

Evaluating disease prediction and effect on stability

SNP and GO determined that 8 missense variants were classified as disease-causing,
while G161R, M1L, D114Y, and A164S were predicted to be neutral. In contrast, P-
Mut predicted only G161R, R152Q, K78T, D114Y, Y37C, and Al164S as false
positives, indicating possible disease variations. Similarly, PhD-SNP categorized
G161R, M1L, D114Y, and A164S missense variants as neutral and the remaining eight
as disease-causing (Table 2). Meta-SNP predicted five nsSNPs as having damaging
effects on the IFN-y protein (Table 2). To further assess protein stability, I-Mutant was
used to evaluate single-site mutations and predicted that K78T, Y76F, and Y37C
significantly reduced protein stability, with the corresponding Reliability Index (RI)
values (Table 2). These polymorphisms were identified as the most detrimental, likely
due to their strong destabilizing effects on the IFN-y protein structure.

Table 2. Forecasting functional nsSNPs associated with disease and the impact on protein

stability.
rs 1D Sub P-Mu  SNP&GO PhD-SNP Meta SNP I-Mutant
E S E E S E S E RI
rs769209772 G—R 161 F 04901 N N 3 N 6 1 3
rs377736305 R—Q 152 F 03049 D D 0 N 3 1 7
rs755519988 R—C 130 T 06878 D D 6 D 4 1 6
rs761801101 K—T78 F 04397 D D 3 N 5 1 1
rs867244009 Y—F 76 T 05444 D D 2 N 0 1 3
rs564666653 [>T 72 T 0632 D D 4 D 0 1 8
rs564666653 [N 72 T 07265 D D 5 D 5 i 6
rs1009245499 V—E 45 T 06811 D D 6 D 4 1 9
rs1304053808 M—L 1 T 07101 N N 6 N 5 1 4
rs1178805738 DoY 114 F 04585 N N 0 N 1 i 6
rs1477303678 Y—C 37 F 04691 D D 4 D 2 1 3
rs369578383 A—S 164 F 03771 N N 9 N 8 1 8

Note: Sub=Substitutions; D=Disease; E=Effect; F=False; N=Neutral; S=Score; T=True;
|=Decrease, 1=Increase.

Secondary structure and solvent accessibility
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The SOPMA secondary structure prediction revealed that the protein predominantly
consists of alpha helices, which account for 66.27% (110 residues) of the structure.
Extended strands make up 5.42% (9 residues), beta turns comprise 1.20% (2 residues),
and random coils constitute 27.11% (45 residues). No residues were found in 310
helices, m-helices, beta bridges, or bend regions (Figure 3). The analysis was performed
using a window width of 17, a similarity threshold of 8, and involved four defined
structural states. This indicates a highly helical structure with moderate flexibility
suggested by the presence of random coils. This predominance of a-helical regions over
B-sheet structures reflects its essential role in maintaining conformational resilience,
which is critical for the protein’s functional performance in immune signaling pathways.
Moreover, NetSurfP analysis highlighted the solvent accessibility and structural
disorder of several missense variants. Notably, high disorder scores were observed for
G161R (99%), R152Q (98%), M1L (97%), and A164S (99%), while Y37C showed
moderate disorder (29%), and VVA5E exhibited a solvent accessibility of 55%. The wild-
type residues for all variants were found to be buried (Figure 4). The analysis was based
on 166 residue predictions from a single sequence, with a processing time of 130
seconds (Figure 5). Among the variants, G161R (rs769209772) showed RSA 72% and
ASA 57%; R152Q (rs377736305) had RSA 73% and ASA 167%; R130C
(rs755519988) showed RSA 53% and ASA 119%; K78T (rs761801101) had RSA 47%
and ASA 97%; and Y76F (rs867244009) had RSA 9% and ASA 20%. The 172T and
172N mutations (rs564666653) both had RSA 5% and ASA 9%. VA5E (rs1009245499)
exhibited RSA 33% and ASA 51%; M1L (rs1304053808) showed RSA 72% and ASA
144%; D114Y (rs1178805738) had RSA 37% and ASA 53%; Y37C (rs1477303678)
had RSA 40% and ASA 86%; and A164S (rs369578383) showed RSA 74% and ASA
81%. Overall, NetSurfP provided insight into the burial or exposure of residues, with
RSA reflecting the proportion of solvent exposure relative to the maximum possible,
and ASA indicating the absolute accessible surface area of each residue.

Helix
Sheet
Turn
Coil

20 40 8] g0 100 120 140 160

20 L 1e] =] g0 100 120 140 160
Figure 3. SOPMA prediction results for the IFN-y protein.
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Figure 4. NetSurfP3 server examines the disorder, surface accessibility, and dihedral angles
of the IFN-y sequence.
Note: Relative Surface Accessibility: “~=Red is exposed and blue is buried, threshold at
25%; Secondary Structure: /' =Helix, ™ =Strand, — =Coil, Disorder: “® =Thickness of line
equals probability of disordered residue.

Homology modeling and quality prediction

Protein structure prediction is essential for interpreting protein bioactivity, and the
3D structure of IFN-y was modeled using Alphafold (Figure 4). The model was
subsequently refined using ModRefiner, which improved its structural quality and
stability. The ERRAT analysis of the predicted protein indicated a quality factor of
95.2381% based on the sliding 9-residue window, confirming a high-resolution and
reliable model. Additionally, the 3D Verify tool assessed the structure and indicated that
48.19% of the amino acids exhibited a quality score of 0.2 or better in the 3D-1D
profile. The Ramachandran plot analysis of the native IFN-y protein using PROCHECK
revealed that 95.50% of residues are in the core region, 4.50% in the allowed region,
and 0.00% in both the generously allowed and disallowed regions, indicating a high-
quality and stereochemically stable structure (Figure 5). The QMEAN4 value of the
refined model was -1.87, indicating a reasonably good model quality (Figure 5).
Mutants K78T (rs761801101), Y37C (rs1477303678), and Y76F (rs867244009)
exhibited higher RMSD values of 0.55, 0.61, and 0.59, respectively (Figure 5),
prompting molecular docking analysis. The complete structural validation results are
summarized in Table 3.

Table 3. Structural validation analysis of IFN-y protein.

rs ID Sub ERRAT 3D verify Pro check TM align
C A G D T R
IFN-y 95.2381 48.19% 9550%  4.50%  0.00%  0.00%

s769209772 G—R 161 95.1049 56.02% 94.80% 3.69%  0.00%  0.00% 0.98027 0.43
rs377736305 R—Q 152 95.2703 52.41% 94.80% 450%  0.60%  0.00% 0.99048 0.49
rs755519988 R—C 130 97.9167 49.40% 96.10% 320%  0.60%  0.00% 0.99029 0.49
rs761801101 K—T78 96.6216 51.81% 96.10% 3.20%  0.60%  0.00% 0.98802 0.55
rs867244009 Y—F 76 97.9592 50.60% 94.20% 580%  0.00%  0.00% 0.98709 0.59
rs564666653 1-T72 96.6216 43.37% 97.40% 2.60%  0.00%  0.00% 0.99204 0.44
rs564666653 I-N 72 94.4444 45.18% 95.50% 450%  0.00%  0.00% 0.98851 0.53
rs1009245499 V—E 45 94.7368 40.36% 95.50% 450%  0.00%  0.00% 0.99223 0.43
rs1304053808 M—-L1 95.1049 56.02% 94.34% 320%  0.00%  0.00% 0.96841 0.44
rs1178805738 D—Y 114 94.4564 43.67% 93.56% 2.60%  0.00%  0.00% 0.96852 0.49
rs1477303678 Y—-C37 98.6207 44.58% 95.50% 450%  0.00%  0.00% 0.98575 0.61
15369578383 A—S 164 94.5609 49.54% 95.50% 350%  0.01%  0.00% 0.98853 0.45

Note: Sub=Substitutions; C=Core; A=Allowed; G=Generously; D=Disallowed; T=TM
Score; R=RMSD.
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Protein ligand visual screening

Molecular docking studies are essential for understanding protein-ligand interactions,
identifying active compounds, interpreting molecular mechanisms, and facilitating drug
discovery and design. In this study, PyRx AutoDock Vina was employed to estimate the
binding affinities between ligands and the target protein. A grid box of appropriate
dimensions was centered on the coordinates of the crystal structure to accurately define
the active site of the target protein. To further analyze the predicted protein-ligand
interactions, Discovery Studio was used for visualization and interpretation. A total of
25 top-ranking compounds were retrieved from the PubChem and ZINC databases,
exhibiting binding free energies ranging from —2.7 to —8.8 kcal/mol (Table 4). These
ligands demonstrated significant interactions with both the wild-type IFN-y protein and
its mutant forms (Y37C, K78T, and Y76F), suggesting their potential as promising drug
candidates. The 2D interaction diagrams generated in Discovery Studio illustrated
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specific interactions between ligand atoms and key residues within the active site of
IFN-y (Figure 6). In particular, the dotted lines in the diagram indicate hydrogen bonds
and other interactions formed between the ligands and the residues of the wild-type
protein. The molecular docking analysis of various ligands, Laminin, Tamoxifen, JMS,
FUL (Fulvestrant), Melanin, Parecoxib, and Rofecoxib, against IFN-y and Y37C, K78T,
and Y76F revealed significant differences in binding affinities and interaction profiles.
Among all ligands, Laminin exhibited the strongest binding affinity with the native
IFN-y protein (-8.8 kcal/mol), involving crucial interactions with residues such as
Leull8, Lys117, Phel05, Val73, and Phell5 through Van der Waals forces, Pi-Pi
stacking, and alkyl interactions. These strong interactions were preserved across Y37C,
K78T, and Y76F, with only slight variations in binding energies (-8.4 to -8.7 kcal/mol),
indicating Laminin's robust binding capacity irrespective of point mutations. Tamoxifen
also showed a high binding affinity (-8.5 kcal/mol) with the native IFN-y, forming
hydrogen bonds (notably with Glu116) and engaging in Pi-alkyl interactions with Phe77
and Val73. However, its interaction with the mutant forms was not elaborated in detail.
FUL demonstrated moderate binding affinity (-7.4 kcal/mol with native and -7.0
kcal/mol with mutants), forming conventional hydrogen bonds and maintaining
interactions mainly with Phel115, Glul116, Lys78, and surrounding residues (Table 5).

Table 4. Docking score (-Kcal/mol) outcomes of IFN-y, Y37C, Y76F and K78T nsSNPs with

25 ligands.

Ligands IFN-y Y37C Y76F K78T
BCT -2.7 -2.3 -2.4 -2.6
FUL -7.4 -7 -6.9 -7
GLC -4.3 -4.2 -4.1 -4.1
GOL -3.2 -3.2 -3.1 -3.1
INS -2.4 -1.9 -1.8 -1.9
U1 -6.8 -5.3 -5.8 -6.2
JMS -6.9 -6.2 -6.2 -6.1

Laminin -8.8 -8 -8.7 -8.1

Lomiflaxcin -6.6 -6.6 -6.3 -6.5
M2P -4.4 -4.8 -4.8 -4.9
Melanin -1.2 -1.7 -1.2 -1.7
Memantine -6.1 -5.4 -5.4 -5.4
MPD -4.6 -3.7 -3.3 -3.5
OXL -3.3 -3.1 -2.9 -2.8

Parecoxib -6.9 -7 -7.6 -7.8

PFN -2.3 -1.9 -1.9 -2

Pirnixic Acid -5.6 -5.6 -6.1 -6.1
Rofecoxib -6.9 -6.7 -6.6 -6.5
S-Adenosylmethionine -5.1 -6 -6.4 -5.3
Statin -6 -5 -4.7 -4.9
Tamoxifen -8.5 -6.5 -6.5 -6.5
Tetracycline -6.6 -6.4 -6.5 -6.5
TVY -5.6 -5.3 -5.8 -5.4

Z8T -5 -4.6 -3.9 -4
Zanamivir -4.8 -5.2 -5.7 -5

Table 5. Molecular docking interaction of ligands with wild type (WT) and mutant forms of
IFN-y protein.

Protein type Ligand Hydrophilic interaction (residue) Additional hydrophilic interaction
WT Laminin Leul18, Lys117, Asn120, Lys78, Phe75, Phel15, Val73, Phe47, Glul16, Thrl19,
Tyr76, Ser70, lle72, Phel05, Lys97 Ser74
WT FUL Phel15, Lys78, Asn120, Glul16, Val73, Phe77, Thr119
Ser74
WT Melanin Lys97, Argl12, Glul16, Tyrl21, Leul1ls, Phell5, Ser74, Val73, Phe77, Thr119,
Phel05, Met100, lle72, Phe75, Lys78, Asnl120
Lys81, Tyr76
WT JMS Lys78, Tyr76, Phel04, Phe80, Lys97, Glul16, Phe77, Val73, Met100, Thr119,
Phel15, Tyr121, Lys117, Ser74 Asn120
WT Rofecoxib Lys117, Thrl21, Leull8, Lys81, Lys97, Phe77, Val73, Glul16, Asn120, Thr119,
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Phe115, Arg112, Phe105, Tyr76, 1le72,
Phe75, Lys78
Phel05, Lys97, Phe80, Phe75, Lys70,
Lys81, Tyr121, Lys117, Glu116
Lys117, Leu118, Asn120, Lys78, Phe75,
Tyr76, Ser70, le72, Phel05, Lys97
Asn120, Phel105, Val73, Lys78, Glu116,
Ser74
Phel15, Lys78, Phel05, Ser74, Tyr76,
Phel04, Lys97, Phe80, Lys117, Tyr121,
Leu118, Glul16, Met100
Leul18, Tyrl21, Lys117, Phe80, Lys97,
Phel04, Tyr76, Ser74, Phel05, Lys78,
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Melanin showed an enhanced binding affinity in the mutant forms (-7.7 kcal/mol)
compared to the IFN-y (-7.2 kcal/mol), with key involvement of residues Argll2,
Phel05, Phe77, and Glull16 (Table 5). These interactions included Pi-Pi stacking and
hydrogen bonds, suggesting Melanin may bind more effectively to mutant IFN-y than
the native protein. Parecoxib and Rofecoxib exhibited comparatively lower binding
affinities. Parecoxib had a binding score of -6.9 kcal/mol with the native form, which
slightly improved to -7.8 kcal/mol in the K78T and Y76F mutants. Key interactions
included hydrogen bonding and Pi-alkyl interactions with Phel115, Lys117, and Met100.
Similarly, Rofecoxib showed a binding affinity of -6.9 kcal/mol with the native IFN-y,
which decreased slightly in the mutant proteins (-6.5 kcal/mol), though core interactions
with residues such as Tyr76, Argl12, Val73, and Phel05 remained conserved (Table 5).
Overall, the analysis revealed that Laminin and Melanin maintain strong and consistent
interactions with both native and mutant IFN-y proteins, indicating their potential as
stable therapeutic binders. Meanwhile, FUL, Parecoxib, and Rofecoxib demonstrated
variable interaction profiles and reduced binding strengths. Across all docking studies,
critical interacting residues consistently included Phell5, Glull6, Phel05, Val73,
Ser74, and Phe77, which appear to play central roles in ligand stabilization (Table 5).
These findings suggest that specific mutations in IFN-y do not drastically alter its
binding pocket, allowing certain ligands to retain their efficacy. The ligands analyzed in
this study laminin, tamoxifen, fulvestrant (FUL), melanin, parecoxib, and Rofecoxib
show promising potential in the treatment of IFN-y-related disorders. IFN-y is a crucial
cytokine involved in immune system regulation, primarily responsible for macrophage
activation, antigen presentation, and the coordination of adaptive immune responses.
Dysregulation or mutations in the IFN-y gene are associated with several immune-
related disorders, such as autoimmune diseases, chronic inflammation, and Mendelian
susceptibility to mycobacterial diseases (MSMD). The molecular docking results
demonstrated strong binding affinities of laminin and melanin, with both wild-type and
mutant IFN-y proteins. These interactions suggest that these ligands could help stabilize
the mutated protein, restore its normal function, or modulate its activity to balance
immune responses.

These compounds also play an essential role in future structure-based drug
discovery. The favorable interactions of ligands such as laminin and melanin with
critical amino acid residues (Phell5, Glul16, Phel05, and Val73) across all IFN-y
variants indicate their potential as lead molecules. Their consistent binding in both wild-
type and mutant forms highlights their capacity to function as broad-spectrum
therapeutic agents, capable of targeting a range of IFN-y-related dysfunctions.
Moreover, tamoxifen and fulvestrant are estrogen receptor modulators, and anti-
inflammatory drugs like parecoxib and rofecoxib, may offer repurposing opportunities
for immunomodulatory treatment, potentially enhancing the efficacy of therapies
targeting chronic inflammation and immune imbalance. Despite these promising
findings, the study has several limitations. First, the analysis is purely computational;
hence, the predicted interactions require experimental validation through in vitro assays,
animal studies, and clinical trials to confirm biological relevance, safety, and
effectiveness. Second, the study only examined Y37C, K78T, and Y76F, while real-
world patient populations may present with more diverse and complex mutations.
Additionally, the primary pharmacological roles of tamoxifen, fulvestrant, and other
ligands might pose challenges due to off-target effects or toxicities if repurposed
without structural optimization. However, this study opens possibilities for drug
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repurposing, using clinically approved compounds, and supports rational drug design. It
also advances precision medicine by tailoring treatments to genetic profiles, enhancing
therapeutic outcomes. However, further validation through experimental studies is
needed to fully assess the biological significance of these predictions.

Interferon-gamma (IFN-vy) is a critical regulator of tumor progression and immune-
mediated tumor suppression. It is predominantly expressed by antigen-activated T cells,
natural Killer (NK) cells, natural killer T (NKT) cells, and dendritic cells. The term
"interferon™ (IFN) was first introduced in 1957 following the discovery of a factor
capable of inhibiting influenza virus replication in murine models. (1) This discovery
led to the identification of a novel family of cytokines known as interferons (IFNSs),
which are categorized into three major types: Type | (IFN-a), Type II (represented
solely by IFN-y), and Type III (IFN-X), comprising IFN-A1, IFN-A2, and IFN-A3
formerly designated as IL-28A, IL-28B, and IL-29. (2) Type | IFN genes are conserved
across all vertebrate species. Among them, 13 IFN-a genes encode 12 structurally
identical IFN-a protein isoforms. In amphibians, IFN genes exhibit structural diversity,
as they may exist either as intronless sequences or contain introns, reflecting
evolutionary variability in gene organization. (3-5). A distinctive feature of IFN-y is its
conserved C-terminal tail, which is maintained across a wide range of species, including
fish, amphibians, birds and mammals. This conserved region is enriched with LYS and
ARG residues, which are crucial for the protein integrity (8). Furthermore, IFN-y
mutations also disrupt receptor interactions, resulting in immunodeficiency. In cancer,
IFN-y mutations can either suppress tumor growth or contribute to chronic
inflammation that fosters cancer progression. Understanding these genetic alterations is
crucial for developing targeted therapies for infectious diseases, autoimmune disorders,
and cancer.

Genome-wide association studies (GWAS) have revealed multiple IFN-y
polymorphisms associated with altered immune responses. These genetic variations can
enhance susceptibility to a range of infectious diseases, autoimmune disorders, and
inflammatory conditions by affecting the expression and function of the IFN-y gene (9).
Moreover, data from the Catalogue of Somatic Mutations in Cancer (COSMIC) reveals
that 49,967 unique samples were analysed, 243 exhibited mutations in the IFN-y gene.
These mutations can affect IFN-y production, receptor binding, and downstream
signaling, ultimately disrupting immune regulation. Notably, the rs1861494 SNP has
been associated with leprosy, asthma, and non-Hodgkin lymphoma, while the
rs2069718 SNP has been linked to severe cases of COVID-19, suggesting its potential
role in disease severity. Additionally, the rs2430561 SNP has been implicated in
susceptibility to tuberculosis, underscoring its importance in immune response
regulation (10). Loss-of-function mutations in the IFN-y gene impair the host's
immunity to defend against tuberculosis and Bacterial infections, increasing the risk of
Mendelian susceptibility to mycobacterial disease (MSMD). Gain-of-function mutations
lead to excessive IFN-y production, which can induce chronic inflammation associated
with lupus and rheumatoid arthritis.

The IFN-y gene is located on human loci on 12ql4.1 and spans roughly 9.6
kilobases, encompassing 4 exons and 3 introns. It encodes IFN-y gene lies between base
pairs 57,700,000 and 67,300,000 and is tightly regulated by promoter and untranslated
regions (UTRs), which contain binding sites for key transcription factors such as
STAT1, NF-kB, and IRF-1. These regulatory elements modulate IFN-y expression in
response to immune stimuli, including infections and inflammatory signals. The IFN-y
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protein is initially synthesized as a monomer consisting of 146 amino acids, but
following post-translational modifications, it forms a biologically active homodimer
with 166 amino acids (6). Structurally, IFN-y belongs to the type II IFN family and
features a helical bundle composed of six a-helices (A—F), which are essential for
binding to its receptor complex (IFNGR1 and IFNGR2) and initiating downstream
immune signaling. The structural integrity and regulated expression of IFN-y are
fundamental to its role in orchestrating effective immune responses, and disruptions in
its gene or protein structure can lead to immune-related disorders (7). This study focuses
on the computational analysis of missense variants in the human IFN-y gene that may
disrupt protein function and contribute to immune-related disorders. By predicting the
functional and structural effects of these variants, including secondary structure and
solvent accessibility using SOPMA and NetSurfP, the research aims to uncover
potentially damaging mutations. The outcomes are expected to provide valuable insights
into the role of IFN-y gene variations in infectious diseases, autoimmune conditions,
and cancer, paving the method for the development of targeted therapeutic approaches.

Our findings showed that 1,891 SNPs within the IFN-y gene by the SNPnexus
algorithm and G161R (rs769209772), R152Q (rs377736305), R130C (rs755519988),
K78T (rs761801101), Y76F (rs867244009), 172T (rs564666653), 172N (rs564666653),
VA5E (rs1009245499), M1L (rs1304053808), D114Y (rs1178805738), Y37C
(rs1477303678), and A164S (rs369578383) were predicted to be highly deleterious.
Additionally, PROVEAN analysis identified 10 nsSNPs in the human IFN-y gene as
deleterious, whereas M1L (-1.921) and A164S (-0.856) were predicted to be neutral.
Furthermore, 172T, R130C, and Y37C exhibited the most damaging effects, with
PROVEAN scores of -6.410, -6.301, and -6.158, respectively. ConDEL uses a
consensus weighted scoring approach, classified 9 nsSNPs as deleterious and G161R,
M1L, and A164S as neutral. According to PPh2, 11 nsSNPs were predicted to probably
damage the IFN-y protein. ConDEL classified G161R, M1L, and A164S as neutral,
while SNP and GO also predicted G161R, M1L, D114Y, and A164S as neutral variants.
P-Mut identified G161R, R152Q, K78T, D114Y, Y37C, and A164S as false positives.
PhD-SNP categorized four missense variants as neutral, whereas Meta-SNP predicted
five nsSNPs as having damaging effects. Additionally, I-Mutant analysis revealed that
K78T, Y76F, and Y37C significantly reduced protein stability. SOPMA analysis
showed that IFN-y is predominantly a-helical (66.27%), with minor contributions from
extended strands (5.42%), beta turns (1.20%), and random coils (27.11%), indicating a
stable yet moderately flexible structure. This helical dominance supports its structural
integrity in immune signaling. NetSurfP analysis revealed high disorder in G161R
(99%), R152Q (98%), M1L (97%), and A164S (99%), while Y37C showed moderate
disorder (29%), and V45E had a solvent accessibility of 55%. All wild-type residues
were buried, suggesting a structural impact upon mutation.

The 3D model generated by AlphaFold showed good quality, with 95.5% of residues
in favored regions and a QMEAN4 score of -1.87. Mutants K78T, Y37C, and Y76F
exhibited elevated RMSD values (0.55-0.61), demanding further docking analysis.
Molecular docking studies revealed that Laminin exhibited the strongest binding affinity
to both wild-type and mutant forms of IFN-y, with a binding energy of -8.8 kcal/mol for
the wild-type and similar affinities for the mutants (Y37C, K78T, Y76F). Melanin also
showed enhanced binding to the mutant forms compared to the wild-type, suggesting its
potential to bind more effectively in the presence of mutations. Tamoxifen and
Fulvestrant displayed moderate binding affinities, with variable interaction profiles in
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the mutant forms, while Parecoxib and Rofecoxib demonstrated lower binding
strengths.These findings highlight Laminin and Melanin as promising candidates for
stabilizing IFN-y, potentially modulating immune responses in disorders related to IFN-
v dysfunction. The consistency of interactions with key residues (Phell5, Glullé,
Phel05, and Val73) across wild-type and mutant proteins underscores their therapeutic
potential. However, the results require experimental validation, and repurposing
compounds like Tamoxifen and Fulvestrant may need structural optimization to reduce
off-target effects and enhance their efficacy.

These findings offer valuable insights for drug discovery, particularly in targeting
IFN-y-related immune disorders. The identification of Laminin and Melanin as strong
binders to both wild-type and mutant IFN-y proteins suggests their potential as
therapeutic agents for stabilizing the protein or modulating its activity. This can be
particularly beneficial in conditions where IFN-y dysfunction is involved, such as
autoimmune diseases or chronic inflammation. Additionally, the fact that these ligands
demonstrate consistent binding across various mutations indicates their broad-spectrum
potential, which could be crucial for treating genetically diverse patient populations
with IFN-y-related disorders. The novelty of these findings lies in their application to
mutant forms of IFN-y, an area that has not been extensively explored in prior drug
discovery studies. While IFN-y role in immune regulation is well-established, targeting
its mutant forms with specific ligands opens new avenues for precision medicine.
Furthermore, repurposing existing compounds like Tamoxifen and Fulvestrant for IFN-
y-related dysfunction is a novel approach that could expedite drug development by
utilizing already-approved drugs for new therapeutic indications. This research thus
paves the way for further experimental validation and optimizes the potential for
therapeutic intervention in IFN-y-associated diseases.

Conclusion

The study provides significant insights into the genetic and structural implications of
missense mutations in the IFN-y gene, with implications for immune-related disorders,
cancer, and infectious diseases. Through computational analysis, 1,891 SNPs within the
IFN-y gene were evaluated, identifying several highly deleterious variants, including
G161R, R152Q, R130C, K78T, Y76F, I72T, and others, which were predicted to
disrupt protein function and stability. The analysis highlighted that 172T, R130C, and
Y37C, exhibited the most damaging effects, potentially compromising immune
signaling pathways essential for regulating immune responses. The molecular modeling
and docking studies further emphasized the critical role of IFN-y's structural integrity,
with identified ligands such as Laminin and Melanin showing strong binding affinities
to both wild-type and mutant IFN-y proteins, suggesting their potential as therapeutic
agents for stabilizing or modulating the protein’s activity. Laminin and Melanin
represent promising candidates for future drug development due to their ability to
interact with key residues on both wild-type and mutant IFN-y proteins, potentially
offering a broad-spectrum therapeutic approach. Additionally, Tamoxifen and
Fulvestrant could accelerate the clinical application of these compounds for IFN-y-
related dysfunctions, though further structural optimization may be needed. By targeting
the structural and functional consequences of specific genetic variants, this research
opens new avenues for precision medicine in treating IFN-y-related diseases. The results
underline the potential of integrating computational drug discovery approaches with
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existing pharmaceutical compounds, facilitating the rapid identification and validation
of therapeutic candidates for a range of immune-mediated diseases. Future experimental
validation of these findings will be essential for confirming their therapeutic potential
and optimizing treatment strategies for individuals with IFN-y-related immune
disorders.
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