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Abstract. IFN-γ is a key immunomodulatory cytokine primarily secreted by activated T lymphocytes, 

NK cells, NKT cells, and dendritic cells. The IFN-γ protein is encoded by the IFNG gene located on 

chromosome 9q14.3 and plays a central role in host immune responses. The current study employed an 

integrated computational approach to predict deleterious missense SNPs of the IFN-γ gene. These 

variants potentially disrupt the structural integrity and biological activity of IFN-γ, contributing to 

aberrant immune responses implicated in tumorigenesis and chronic inflammation. To assess the 

functional consequences of these mutations, molecular docking analyses were conducted. Through 

comprehensive screening, 12 deleterious nsSNPs were identified, localized within non-synonymous 

regions. SOPMA revealed that the IFN-γ protein is predominantly α-helical, constituting about 66.27% of 

the total secondary structure. Our results show high disorder scores for the G161R, R152Q, M1L, and 

A164S mutants, suggesting a loss of structural order, which may negatively impact protein function. 

Structural modeling was performed using AlphaFold, followed by validation with the SAVES v6.0 

server. K28T, Y37C, and Y76F induced marked conformational changes involved in receptor binding, as 

evidenced by high RMSD values. Our results emphasize Laminin, Tamoxifen, Fulvestrant, Melanin, 

Parecoxib, and Rofecoxib. Both Laminin and Melanin demonstrated strong binding affinities with native 

and mutant IFN-γ structures, engaging crucial residues such as Phe115, Glu116, Phe105, and Val73. 

These residues are crucial for ligand binding and cytokine function, highlighting their therapeutic 

importance. Our findings provide insights for the development of targeted therapies for IFN-γ-related 

disorders, including autoimmune diseases, cancer, and infectious conditions. The novelty of this study lies 

in its comprehensive analysis of mutant IFN-γ forms, paving the way for precision medicine approaches 

tailored to genetically diverse populations. Further experimental validation is necessary to substantiate 

these findings and evaluate their clinical significance. 

Keywords: cytokine, IFNG, NKT cells, non-synonymous SNPs 

Introduction 

Single-nucleotide polymorphisms (SNPs) in the interferon-gamma (IFN-γ) gene are 

key tumor progression and suppression regulators. This gene is primarily expressed in 

immune cells such as antigen-activated T cells, natural killer (NK) cells, natural killer T 

(NKT) cells, and dendritic cells (DCs). Moreover, the production of IFN-γ can be 

indirectly triggered by lipopolysaccharides (LPS) and certain viral infections. In 1957, 

the term "Interferon" (IFN) was first coined to describe a substance that inhibited the 
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spread of the influenza virus in an experimental study conducted on mice (Isaacs and 

Lindenmann, 1957). This discovery led to the identification of a new family of proteins 

known as IFNs, which are classified into three types; Type I (IFN-α), Type II (IFN-γ), 

and Type III, also referred to as IFN-λ including IFN-λ1, IFN-λ2, and IFN-λ3, formerly 

known as IL-28A and IL-28B (Khanna and Gerriets, 2020). Type I IFN genes are 

present in all vertebrates and are generally large and intronless. IFN-α1 and IFN-α13 

share a high degree of sequence similarity, while IFN-β, IFN-ω, IFN-κ, and IFN-ϵ exist 

as single genes with minimal amino acid homology among them. The 13 IFN-α genes 

encode 12 structurally identical IFN-α proteins. In amphibians, IFN genes may either be 

intronless or contain introns (Kotenko and Durbin, 2017; Sang et al., 2016; Qi et al., 

2010). The IFN-γ gene is situated on chromosome 12q14.1 and comprises 4 exons and 3 

introns, covering approximately 9.6 Kb between base pairs 57,700,000 and 67,300,000. 

It encodes interferon-gamma (IFN-γ), a vital cytokine involved in immune defense. 

IFN-γ is initially synthesized as a monomer with 146 amino acids but undergoes post-

translational modifications to form a functional homodimer consisting of 166 amino 

acids (Reynard, 2002). Structurally, it belongs to the type II IFN family and features a 

helical arrangement with 6 α-helices necessary for receptor interaction. The regulation 

of IFN-γ expression is influenced by promoter regions and untranslated regions (UTRs), 

which provide binding sites for transcription factors (STAT1, NF-κB, and IRF-1). These 

elements play a key role in controlling IFN-γ production in response to immune 

challenges, including infections and inflammatory conditions (Savan et al., 2009). One 

distinctive characteristic of IFN-γ is its conserved C-terminal tail, which is present 

across various species such as fish, frogs, chickens, and mammals. This region contains 

lysine and arginine residues, which contribute to its biological function (Griggs et al., 

1992). 

Genome-wide association studies (GWAS) have identified several SNPs in the IFN-γ 

gene that can lead to altered immune responses, increasing susceptibility to various 

infectious diseases, autoimmune disorders, and inflammatory conditions (Kaur et al., 

2019). According to data from the Catalogue of Somatic Mutations in Cancer 

(COSMIC), among 49,967 unique samples analyzed, 243 unique samples exhibited 

IFN-γ mutations. These mutations can impact IFN-γ production, receptor binding, and 

downstream signaling pathways, ultimately disrupting immune regulation. Notably, the 

rs1861494 SNP has been linked to leprosy, asthma, and non-Hodgkin lymphoma. 

Moreover, the rs2069718 SNP has been associated with critical cases of COVID-19, 

suggesting a potential role in disease severity. The rs2430561 SNP has been implicated 

in susceptibility to tuberculosis, highlighting its significance in immune response 

regulation (Pacheco and Moraes, 2009). These mutations can impact IFN-γ production, 

receptor binding, and downstream signaling pathways, ultimately disrupting immune 

regulation. Loss-of-function mutations weaken the body's ability to combat infections 

such as tuberculosis and Salmonella, increasing the risk of chronic diseases such as 

Mendelian susceptibility to mycobacterial disease (MSMD). In contrast, gain-of-

function mutations cause excessive IFN-γ production, triggering chronic inflammation 

linked to autoimmune disorders (lupus and rheumatoid arthritis). Some mutations 

impair IFN-γ receptor interactions, leading to immunodeficiency. In cancer, IFN-γ 

mutations can either suppress tumor growth or contribute to chronic inflammation, 

promoting cancer progression. Understanding these genetic changes is essential for 

developing targeted treatments for infectious, autoimmune, and cancer-related 

conditions. The present study is to systematically analyse and predict the impact of 
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missense SNPs in the human IFN-γ gene using a comprehensive array of computational 

tools. By assessing the functional and structural consequences of these genetic 

variations, this study aims to identify potentially deleterious mutations that may 

influence immune regulation and disease susceptibility. The findings will contribute to a 

deeper understanding of IFN-γ-associated genetic variations and their role in infectious 

diseases, autoimmune disorders, and cancer, ultimately aiding in the development of 

targeted therapeutic strategies. 

Materials and Methods 

Collection and functional characterization of variants 

The FASTA sequence of the human IFN-γ gene (NC000012_12) was retrieved from 

the NCBI database, with its corresponding UniProt ID P01579. Additionally, SNP data 

for IFN-γ were obtained from the dbSNP-NCBI database for further computational 

analysis. Several bioinformatics tools were utilized to evaluate the potential functional 

consequences of variants. SNPnexus integrates multiple predictive algorithms, including 

SIFT and PolyPhen. SIFT classifies variants as tolerated or deleterious, with a threshold 

score of ≤0.05 indicating a deleterious effect (Fareed et al., 2022; Hasnain et al., 2020; 

AbdulAzeez, S., Borgio, 2016; Sim et al., 2012). PolyPhen evaluates variants as benign, 

possibly damaging, or probably damaging, with scores ranging from 0 to 1, where 

values closer to 1 indicate a higher likelihood of a damaging effect (Hasnain et al., 

2020; Mahmud et al., 2016; Jahandideh and Zhi, 2014). The Protein Variation Effect 

Analyzer (PROVEAN) predicts the impact of amino acid substitutions or indels on 

protein function using sequence clustering and alignment-based scoring. Variants with a 

score below -2.5 are classified as deleterious, while those above this threshold are 

considered neutral (Fareed et al., 2022; Mahmud et al., 2016; Choi et al., 2012). 

Polymorphism Phenotyping v2 (PolyPhen-2) utilizes physical properties and 

comparative evolutionary analysis to classify variants as benign, possibly damaging, or 

probably damaging (Adzhubei et al., 2013). Consensus DELeteriousness (CONDEL) 

integrates the results of multiple predictive algorithms to assess the impact of single-

nucleotide variants on protein function. It provides a consensus score, improving the 

accuracy of deleteriousness predictions (Gnad et al., 2013). 

 

Assessment of variants for disease linkages and protein stability 

The SNP and GO tool is used for predicting disease-associated amino acid changes 

in protein by utilizing the UniProt accession number and variant position to classify 

variants, with probability values >0.5 indicating disease-associated SNPs (Fareed et al., 

2022; Hasnain et al., 2020; AbdulAzeez and Borgio, 2016; Magesh and George Priya 

Doss, 2014). P-MUT assesses the pathological impact of single amino acid variants in 

human proteins, achieving approximately 80% accuracy (López-Ferrando et al., 2017). 

PhD-SNP with a 78% accuracy rate, predicts disease-associated SNPs by ranking them 

on a scale of 0 to 9, to enhance the reliability of SNP classification through 

computational analysis. Meta-SNP predicts the impact of nsSNVs on protein function 

by integrating multiple tools. It assigns a score from 0 to 1, where values above 0.5 

indicate disease-associated mutations (Fareed et al., 2022; Hasnain et al., 2020; Arshad 

et al., 2018; Jahandideh, S., Zhi; 2014; Magesh and George Priya Doss, 2014). The 

impact of mutations on protein stability can be assessed by analyzing changes in free 
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energy. I-Mutant 2.0 predicts stability changes due to nsSNPs with 77% accuracy, 

providing a reliability index (RI) from 0 to 10 (Fareed et al., 2022; Hasnain et al., 2020; 

Capriotti et al., 2006). 

 

Secondary structure and solvent accessibility analysis 

The Self-Optimized Prediction Method with Alignment (SOPMA) tool that predicts 

protein secondary structures by analyzing amino acid sequences (Santhoshkumar and 

Yusuf, 2020). It identifies regions likely to form α-helices, β-sheets, turns, or coils, 

offering insights into protein architecture. SOPMA enhances prediction accuracy by 

incorporating information from multiple sequence alignments of homologous proteins 

(Angamuthu and Piramanayagam, 2017; Geourjon, C., Deleage, 1995). NetSurfP-2.0 

predicts key structural features of proteins, such as solvent accessibility, secondary 

structure, disorder regions, and backbone dihedral angles, by analyzing their amino acid 

sequences. It utilizes a combination of convolutional and bi-directional long short-term 

memory neural networks trained on solved protein structures. By inputting a protein 

sequence, researchers can obtain detailed insights into its structural characteristics, 

which are essential for understanding interaction interfaces and functional regions 

within the fully folded protein (Khan et al., 2021). 

 

Structure prediction of IFN- γ 

The Protein Data Bank (PDB) entries for IFN-γ structures, such as 1HIG and 1EKU, 

represent truncated versions of the protein, each consisting of 143 amino acids. These 

truncated forms were utilized to facilitate crystallization and structural analysis. 

Currently, no PDB structure encompasses the full-length 166 amino acid sequence of 

the IFN-γ protein.  Computational tools were employed to model the full-length IFN-γ 

protein to achieve accurate structural predictions and analyses. AlphaFold was utilized 

to predict the three-dimensional coordinates of all heavy atoms in the protein based 

solely on its primary amino acid sequence (Jumper et al., 2021). The resulting structure 

was visualized using PyMOL, which simplified the depiction of the 3D conformation 

and allowed for the introduction of specific amino acid mutations. To enhance the 

accuracy of these models (30). ModRefiner was employed for structural refinement (Xu 

and Zhang, 2011). The quality of the refined models was assessed using the SAVES 

server, incorporating tools such as PROCHECK to generate Ramachandran plots that 

evaluate the stereochemical quality of the protein structures; a high percentage of 

residues in favored regions indicates good structural quality (Mahmud et al., 2016; 

Colovos and Yeates, 1993). Finally, TM-align was used to compare native and mutated 

protein structures, calculating metrics such as the TM-score and root-mean-square 

deviation (RMSD); a TM-score closer to 1 signifies high structural similarity, while a 

higher RMSD indicates greater differences between structures. Collectively, these 

computational approaches provide a comprehensive framework for modeling, refining, 

validating, and comparing protein structures, offering valuable insights into the 

structural and functional implications of IFN-γ and its variants (Zhang and Skolnick. 

2005; Zhang and Skolnick, 2004; Carugo and Pongor, 2001). 

 

Virtual screening and molecular docking 

To determine which of the listed compounds could potentially modulate the IFN-γ 

gene through molecular docking, a comprehensive computational analysis is required. 
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The 3D structures of the compounds can be sourced from PubChem, DrugBank, or 

ZINC database. Molecular docking studies using PyRx can then assess the binding 

affinity of these compounds to IFN-γ, providing insights into their potential interactions 

(Dallakyan and Olson, 2014; Trott, O., Olson, 2010; Morris et al., 2008). Among the 

listed compounds, S-Adenosylmethionine is known to regulate immune responses and 

cytokine expression, suggesting a possible role in IFN-γ modulation. Statins, including 

Simvastatin and Atorvastatin, have been reported to suppress IFN-γ-mediated 

inflammation, making them relevant candidates. Tamoxifen is commonly used in cancer 

therapy and may influence IFN-γ signaling pathways. Tetracycline, with its anti-

inflammatory properties, could also affect IFN-γ expression. Additionally, COX-2 

inhibitors such as Parecoxib and Rofecoxib are known to modulate immune responses, 

which may indirectly impact IFN-γ levels. To confirm their potential as IFN-γ 

modulators, further molecular docking and interaction studies are needed, analyzing 

parameters such as binding energy, hydrogen bonding, and hydrophobic interactions 

using Discovery Studio (Adeniji et al., 2020). 

Results and Discussion 

Variants collection 

The human IFN-γ gene contains a total of 3,419 single-nucleotide polymorphisms 

(SNPs), and the corresponding protein sequences were retrieved from the NCBI 

database and analyzed using various computational algorithms. Among these SNPs, 77 

were identified as non-synonymous SNPs (nsSNPs) affecting the IFN-γ protein. 

Additionally, the dataset included SNPs located in different regions: 146 in the 

untranslated regions (UTRs), 42 synonymous, 98 in the 5′ upstream region, 1707 in 

non-coding regions, 919 in coding regions, and 58 in the 3′ downstream region (Figure 

1). For further investigation, the identified nsSNPs in the IFN-γ protein were selected to 

assess their potential effects on protein structure, stability, and functional activity. 

 

 
Figure 1. Outcome of SNPnexus server. 

 

Download functionality detrimental variants 
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SNPnexus identified a total of 1,891 SNPs within the IFN-γ gene, each assigned a 

unique index. Using the SIFT algorithm, 26 non-synonymous SNPs (nsSNPs) were 

predicted to be deleterious, while 44 were considered tolerated (Figure 2). Further 

analysis with the PolyPhen-2 tool revealed 12 nsSNPs as probably damaging, 11 as 

possibly damaging, and 47 as benign. PolyPhen-2 scores range from 0 to 1, with values 

closer to 1 indicating higher potential for functional damage and values near 0 

representing a likely benign impact. Additionally, a confidence score between 0 and 

0.02 was assigned to 12 nsSNPs, while 9 nsSNPs with a score of 0 were classified as 

highly deleterious (Table 1). Among these, 12 variants G161R (rs769209772), R152Q 

(rs377736305), R130C (rs755519988), K78T (rs761801101), Y76F (rs867244009), 

I72T (rs564666653), I72N (rs564666653), V45E (rs1009245499), M1L 

(rs1304053808), D114Y (rs1178805738), Y37C (rs1477303678), and A164S 

(rs369578383) were consistently predicted to be harmful by both SIFT and PolyPhen. 

These missense SNPs were further validated through comprehensive analysis using 

additional in silico tools, including PPh2, PROVEAN and ConDEL (Table 1). 

Additionally, PROVEAN analysis identified 10 nsSNPs in the human IFN-γ gene as 

deleterious, whereas M1L (-1.921) and A164S (-0.856) were predicted to be neutral 

(Table 1). Moreover, I72T, R130C, and Y37C exhibited the most damaging effects, 

with PROVEAN scores of -6.410, -6.301, and -6.158, respectively. According to 

PolyPhen-2 (PPh2), 11 nsSNPs were predicted to be probably damaging to the IFN-γ 

protein, with scores ranging from 0.818 to 1.000. The A164S variant was considered 

possibly damaging, with a score of 0.818. Furthermore, ConDEL uses a consensus 

weighted scoring approach, classifying 9 nsSNPs as deleterious and G161R, M1L, and 

A164S as neutral. The comprehensive functional deleterious consequences of these 

nsSNPs are detailed in Table 1. 

 
Table 1. List of deleterious IFN-γ variations found by SIFT> PolyPhen>PROVEAN>PPh2 

and ConDEL algorithms. 
rs ID Sub SIFT PolyPhen PROVEAN PPh2 ConDEL 

  S E S E S E S E S E 
rs769209772 G→R 161 0 D 0.923 PD D -3.04 PD 0.992 0.471646 N 

rs377736305 R→Q 152 0 D 0.967 PD D -2.63 PD 1 0.584477 D 

rs755519988 R→C 130 0 D 0.995 PD D -6.301 PD 1 0.588284 D 
rs761801101 K→T78 0 D 0.984 PD D -4.615 PD 0.999 0.577837 D 

rs867244009 Y→F 76 0 D 0.998 PD D -3.63 PD 1 0.656726 D 

rs564666653 I→T 72 0 D 0.992 PD D -4.52 PD 0.998 0.613629 D 
rs564666653 I→N 72 0 D 0.997 PD D -6.41 PD 1 0.614522 D 

rs1009245499 V→E 45 0 D 0.963 PD D -4.324 PD 0.996 0.594845 D 

rs1304053808 M→L 1 0 D 0.956 PD D -1.921 PD 0.984 0.33308 N 

rs1178805738 D→Y 114 0.01 D 0.987 PD D -4.244 PD 1 0.576615 D 

rs1477303678 Y→C 37 0.01 D 0.991 PD D -6.158 PD 1 0.584235 D 

rs369578383 A→S 164 0.02 D 0.991 PD D -0.856 Pos 0.818 0.442043 N 

Note: Sub=Substitutions; D=Deleterious; E=Effect; N=Neutral; S=Score; PD=Probably 

Damaging; Pos=Possibly Damaging. 
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Figure 2. Findings of SIFT and PolyPhen algorithms. 

 

Evaluating disease prediction and effect on stability 

SNP and GO determined that 8 missense variants were classified as disease-causing, 

while G161R, M1L, D114Y, and A164S were predicted to be neutral. In contrast, P-

Mut predicted only G161R, R152Q, K78T, D114Y, Y37C, and A164S as false 

positives, indicating possible disease variations. Similarly, PhD-SNP categorized 

G161R, M1L, D114Y, and A164S missense variants as neutral and the remaining eight 

as disease-causing (Table 2). Meta-SNP predicted five nsSNPs as having damaging 

effects on the IFN-γ protein (Table 2). To further assess protein stability, I-Mutant was 

used to evaluate single-site mutations and predicted that K78T, Y76F, and Y37C 

significantly reduced protein stability, with the corresponding Reliability Index (RI) 

values (Table 2). These polymorphisms were identified as the most detrimental, likely 

due to their strong destabilizing effects on the IFN-γ protein structure. 

 
Table 2. Forecasting functional nsSNPs associated with disease and the impact on protein 

stability. 
rs ID Sub P-Mu SNP&GO PhD-SNP Meta SNP I-Mutant 

  E S E E S E S E RI 
rs769209772 G→R 161 F 0.4901 N N 3 N 6 ↓ 3 

rs377736305 R→Q 152 F 0.3049 D D 0 N 3 ↓ 7 
rs755519988 R→C 130 T 0.6878 D D 6 D 4 ↓ 6 

rs761801101 K→T78 F 0.4397 D D 3 N 5 ↑ 1 

rs867244009 Y→F 76 T 0.5444 D D 2 N 0 ↑ 3 
rs564666653 I→T 72 T 0.632 D D 4 D 0 ↓ 8 

rs564666653 I→N 72 T 0.7265 D D 5 D 5 ↓ 6 

rs1009245499 V→E 45 T 0.6811 D D 6 D 4 ↓ 9 
rs1304053808 M→L 1 T 0.7101 N N 6 N 5 ↓ 4 

rs1178805738 D→Y 114 F 0.4585 N N 0 N 1 ↓ 6 

rs1477303678 Y→C 37 F 0.4691 D D 4 D 2 ↑ 3 
rs369578383 A→S 164 F 0.3771 N N 9 N 8 ↓ 8 

Note: Sub=Substitutions; D=Disease; E=Effect; F=False; N=Neutral; S=Score; T=True; 

↓=Decrease; ↑=Increase. 

 

Secondary structure and solvent accessibility 
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The SOPMA secondary structure prediction revealed that the protein predominantly 

consists of alpha helices, which account for 66.27% (110 residues) of the structure. 

Extended strands make up 5.42% (9 residues), beta turns comprise 1.20% (2 residues), 

and random coils constitute 27.11% (45 residues). No residues were found in 310 

helices, π-helices, beta bridges, or bend regions (Figure 3). The analysis was performed 

using a window width of 17, a similarity threshold of 8, and involved four defined 

structural states. This indicates a highly helical structure with moderate flexibility 

suggested by the presence of random coils. This predominance of α-helical regions over 

β-sheet structures reflects its essential role in maintaining conformational resilience, 

which is critical for the protein’s functional performance in immune signaling pathways. 

Moreover, NetSurfP analysis highlighted the solvent accessibility and structural 

disorder of several missense variants. Notably, high disorder scores were observed for 

G161R (99%), R152Q (98%), M1L (97%), and A164S (99%), while Y37C showed 

moderate disorder (29%), and V45E exhibited a solvent accessibility of 55%. The wild-

type residues for all variants were found to be buried (Figure 4). The analysis was based 

on 166 residue predictions from a single sequence, with a processing time of 130 

seconds (Figure 5). Among the variants, G161R (rs769209772) showed RSA 72% and 

ASA 57%; R152Q (rs377736305) had RSA 73% and ASA 167%; R130C 

(rs755519988) showed RSA 53% and ASA 119%; K78T (rs761801101) had RSA 47% 

and ASA 97%; and Y76F (rs867244009) had RSA 9% and ASA 20%. The I72T and 

I72N mutations (rs564666653) both had RSA 5% and ASA 9%. V45E (rs1009245499) 

exhibited RSA 33% and ASA 51%; M1L (rs1304053808) showed RSA 72% and ASA 

144%; D114Y (rs1178805738) had RSA 37% and ASA 53%; Y37C (rs1477303678) 

had RSA 40% and ASA 86%; and A164S (rs369578383) showed RSA 74% and ASA 

81%. Overall, NetSurfP provided insight into the burial or exposure of residues, with 

RSA reflecting the proportion of solvent exposure relative to the maximum possible, 

and ASA indicating the absolute accessible surface area of each residue. 

 

 

 
Figure 3. SOPMA prediction results for the IFN-γ protein. 
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Figure 4. NetSurfP3 server examines the disorder, surface accessibility, and dihedral angles 

of the IFN-γ sequence. 

Note: Relative Surface Accessibility: =Red is exposed and blue is buried, threshold at 

25%; Secondary Structure: =Helix, =Strand, =Coil, Disorder: =Thickness of line 

equals probability of disordered residue. 

 

Homology modeling and quality prediction 

Protein structure prediction is essential for interpreting protein bioactivity, and the 

3D structure of IFN-γ was modeled using Alphafold (Figure 4). The model was 

subsequently refined using ModRefiner, which improved its structural quality and 

stability. The ERRAT analysis of the predicted protein indicated a quality factor of 

95.2381% based on the sliding 9-residue window, confirming a high-resolution and 

reliable model. Additionally, the 3D Verify tool assessed the structure and indicated that 

48.19% of the amino acids exhibited a quality score of 0.2 or better in the 3D-1D 

profile. The Ramachandran plot analysis of the native IFN-γ protein using PROCHECK 

revealed that 95.50% of residues are in the core region, 4.50% in the allowed region, 

and 0.00% in both the generously allowed and disallowed regions, indicating a high-

quality and stereochemically stable structure (Figure 5). The QMEAN4 value of the 

refined model was -1.87, indicating a reasonably good model quality (Figure 5). 

Mutants K78T (rs761801101), Y37C (rs1477303678), and Y76F (rs867244009) 

exhibited higher RMSD values of 0.55, 0.61, and 0.59, respectively (Figure 5), 

prompting molecular docking analysis. The complete structural validation results are 

summarized in Table 3. 

 
Table 3. Structural validation analysis of IFN-γ protein. 

rs ID Sub ERRAT 3D verify Pro check TM align 

    C A G D T R 
IFN-γ   95.2381 48.19% 95.50% 4.50% 0.00% 0.00% -  

rs769209772 G→R 161 95.1049 56.02% 94.80% 3.69% 0.00% 0.00% 0.98027 0.43 
rs377736305 R→Q 152 95.2703 52.41% 94.80% 4.50% 0.60% 0.00% 0.99048 0.49 

rs755519988 R→C 130 97.9167 49.40% 96.10% 3.20% 0.60% 0.00% 0.99029 0.49 

rs761801101 K→T78 96.6216 51.81% 96.10% 3.20% 0.60% 0.00% 0.98802 0.55 
rs867244009 Y→F 76 97.9592 50.60% 94.20% 5.80% 0.00% 0.00% 0.98709 0.59 

rs564666653 I→T 72 96.6216 43.37% 97.40% 2.60% 0.00% 0.00% 0.99204 0.44 

rs564666653 I→N 72 94.4444 45.18% 95.50% 4.50% 0.00% 0.00% 0.98851 0.53 
rs1009245499 V→E 45 94.7368 40.36% 95.50% 4.50% 0.00% 0.00% 0.99223 0.43 

rs1304053808 M→L 1 95.1049 56.02% 94.34% 3.20% 0.00% 0.00% 0.96841 0.44 

rs1178805738 D→Y 114 94.4564 43.67% 93.56% 2.60% 0.00% 0.00% 0.96852 0.49 
rs1477303678 Y→C 37 98.6207 44.58% 95.50% 4.50% 0.00% 0.00% 0.98575 0.61 

rs369578383 A→S 164 94.5609 49.54% 95.50% 3.50% 0.01% 0.00% 0.98853 0.45 

Note: Sub=Substitutions; C=Core; A=Allowed; G=Generously; D=Disallowed; T=TM 

Score; R=RMSD. 
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Figure 4. Tertiary structure of IFN-γ mutant protein. 

 

 
Figure 5. Procheck-RAMACHANDRAN Plot of IFN-γ and QMEAN analysis. 

 

Protein ligand visual screening 

Molecular docking studies are essential for understanding protein-ligand interactions, 

identifying active compounds, interpreting molecular mechanisms, and facilitating drug 

discovery and design. In this study, PyRx AutoDock Vina was employed to estimate the 

binding affinities between ligands and the target protein. A grid box of appropriate 

dimensions was centered on the coordinates of the crystal structure to accurately define 

the active site of the target protein. To further analyze the predicted protein-ligand 

interactions, Discovery Studio was used for visualization and interpretation. A total of 

25 top-ranking compounds were retrieved from the PubChem and ZINC databases, 

exhibiting binding free energies ranging from –2.7 to –8.8 kcal/mol (Table 4). These 

ligands demonstrated significant interactions with both the wild-type IFN-γ protein and 

its mutant forms (Y37C, K78T, and Y76F), suggesting their potential as promising drug 

candidates. The 2D interaction diagrams generated in Discovery Studio illustrated 
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specific interactions between ligand atoms and key residues within the active site of 

IFN-γ (Figure 6). In particular, the dotted lines in the diagram indicate hydrogen bonds 

and other interactions formed between the ligands and the residues of the wild-type 

protein. The molecular docking analysis of various ligands, Laminin, Tamoxifen, JMS, 

FUL (Fulvestrant), Melanin, Parecoxib, and Rofecoxib, against IFN-γ and Y37C, K78T, 

and Y76F revealed significant differences in binding affinities and interaction profiles. 

Among all ligands, Laminin exhibited the strongest binding affinity with the native 

IFN-γ protein (-8.8 kcal/mol), involving crucial interactions with residues such as 

Leu118, Lys117, Phe105, Val73, and Phe115 through Van der Waals forces, Pi-Pi 

stacking, and alkyl interactions. These strong interactions were preserved across Y37C, 

K78T, and Y76F, with only slight variations in binding energies (-8.4 to -8.7 kcal/mol), 

indicating Laminin's robust binding capacity irrespective of point mutations. Tamoxifen 

also showed a high binding affinity (-8.5 kcal/mol) with the native IFN-γ, forming 

hydrogen bonds (notably with Glu116) and engaging in Pi-alkyl interactions with Phe77 

and Val73. However, its interaction with the mutant forms was not elaborated in detail. 

FUL demonstrated moderate binding affinity (-7.4 kcal/mol with native and -7.0 

kcal/mol with mutants), forming conventional hydrogen bonds and maintaining 

interactions mainly with Phe115, Glu116, Lys78, and surrounding residues (Table 5). 

 
Table 4. Docking score (-Kcal/mol) outcomes of IFN-γ , Y37C, Y76F and K78T nsSNPs with 

25 ligands. 
Ligands   IFN-γ  Y37C Y76F K78T 

BCT -2.7 -2.3 -2.4 -2.6 

FUL -7.4 -7 -6.9 -7 
GLC -4.3 -4.2 -4.1 -4.1 

GOL -3.2 -3.2 -3.1 -3.1 

INS -2.4 -1.9 -1.8 -1.9 
IU1 -6.8 -5.3 -5.8 -6.2 

JMS -6.9 -6.2 -6.2 -6.1 

Laminin -8.8 -8 -8.7 -8.1 
Lomiflaxcin -6.6 -6.6 -6.3 -6.5 

M2P -4.4 -4.8 -4.8 -4.9 

Melanin -7.2 -7.7 -7.2 -7.7 
Memantine -6.1 -5.4 -5.4 -5.4 

MPD -4.6 -3.7 -3.3 -3.5 

OXL -3.3 -3.1 -2.9 -2.8 
Parecoxib -6.9 -7 -7.6 -7.8 

PFN -2.3 -1.9 -1.9 -2 

Pirnixic Acid -5.6 -5.6 -6.1 -6.1 
Rofecoxib -6.9 -6.7 -6.6 -6.5 

S-Adenosylmethionine -5.1 -6 -6.4 -5.3 

Statin -6 -5 -4.7 -4.9 
Tamoxifen -8.5 -6.5 -6.5 -6.5 

Tetracycline -6.6 -6.4 -6.5 -6.5 

TVY -5.6 -5.3 -5.8 -5.4 
Z8T -5 -4.6 -3.9 -4 

Zanamivir -4.8 -5.2 -5.7 -5 

 
Table 5. Molecular docking interaction of  ligands with wild type (WT) and mutant forms of 

IFN-γ protein. 
Protein type Ligand Hydrophilic interaction (residue) Additional hydrophilic interaction 

WT Laminin Leu118, Lys117, Asn120, Lys78, Phe75, 

Tyr76, Ser70, Ile72, Phe105, Lys97 

Phe115, Val73, Phe47, Glu116, Thr119, 

Ser74 
WT FUL Phe115, Lys78, Asn120, Glu116, Val73, 

Ser74 

Phe77, Thr119 

WT Melanin Lys97, Arg112, Glu116, Tyr121, Leu118, 
Phe105, Met100, Ile72, Phe75, Lys78, 

Lys81, Tyr76 

Phe115, Ser74, Val73, Phe77, Thr119, 
Asn120 

WT JMS Lys78, Tyr76, Phe104, Phe80, Lys97, 

Phe115, Tyr121, Lys117, Ser74 

Glu116, Phe77, Val73, Met100, Thr119, 

Asn120 

WT Rofecoxib Lys117, Thr121, Leu118, Lys81, Lys97, Phe77, Val73, Glu116, Asn120, Thr119, 
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Phe115, Arg112, Phe105, Tyr76, Ile72, 

Phe75, Lys78 

Ser74 

WT Tamoxifen Phe105, Lys97, Phe80, Phe75, Lys70, 

Lys81, Tyr121, Lys117, Glu116 

Val180, Val210, Val73, Ser74, Phe77, 

Thr119, Asn120, Ile72, Tyr76 

Y37C Laminin Lys117, Leu118, Asn120, Lys78, Phe75, 
Tyr76, Ser70, Ile72, Phe105, Lys97 

Phe115, Glu116, Thr119, Phe77, Val73, 
Ser74 

Y37C FUL Asn120, Phe105, Val73, Lys78, Glu116, 

Ser74 

Thr119, Phe77, Phe115 

Y37C Lomifloxacin Phe115, Lys78, Phe105, Ser74, Tyr76, 

Phe104, Lys97, Phe80, Lys117, Tyr121, 

Leu118, Glu116, Met100 

Lys81, Asn120, Thr119, Val93, Phe77 

Y37C Melanin Leu118, Tyr121, Lys117, Phe80, Lys97, 

Phe104, Tyr76, Ser74, Phe105, Lys78, 
Phe115, Glu116, Met100 

Phe77, Lys81, Asn120, Thr119, Val73 

Y37C Parecoxib Lys117, Phe115, Met100, Phe105, Lys97, 

Tyr76, Ile72 

Lys78, Asn120, Glu116, Thr119, Phe77, 

Val73, Ser74, Phe75 
Y37C Rofecoxib Leu118, Lys81, Lys97, Arg112, Phe105, 

Tyr76, Ile72, Phe75, Lys78, Lys117, Tyr121 

Phe77, Val73, Glu116, Asn120, Thr119, 

Ser74 

Y76F FUL Lys78, Phe75, Thr119, Asn120, Lys117, 
Leu118, Phe105 

Val73, Ser74, Phe77, Phe115, Glu116 

Y76F Laminin Ile72, Phe75, Lys78, Met100, Phe105, 

Lys47, Arg112, Glu116, Tyr121, Leu118, 
Lys81, Phe76 

Phe115, Ser74, Val73, Phe77, Thr119, 

Asn120 

Y76F Melanin Glu116, Phe115, Lys78, Phe105, Ser74, 

Phe76, Phe104, Phe80, Lys97, Lys117, 
Tyr121, Leu118, Met100 

Phe77, Lys81, Asn120, Thr119, Val73 

Y76F Parecoxib Lys97, Phe76, Ile72, Lys117, Phe115, 

Met100, Phe105 

Thr119, Asn120, Glu116, Phe71, Val73, 

Ser74, Phe75, Lys78 
Y76F Rofecoxib Leu118, Lys81, Lys97, Arg112, Phe105, 

Phe76, Ile72, Phe75, Lys78, Lys117, Tyr121 

Glu116, Asn120, Thr119, Phe77, Val73, 

Ser74 

Y76F Tamoxifen Phe105, Lys97, Phe80, Phe75, Lys70, 
Lys81, Tyr121, Lys117, Glu116 

Val180, Val210, Val73, Ser74, Phe77, 
Tyr76, Ile72, Phe115, Thr119, Asn120 

K78T FUL Phe75, Thr78, Thr119, Asn120, Lys117, 

Leu118, Phe105 

Val73, Phe77, Ser74, Phe115, Glu116 

K78T Laminin Lys97, Lys117, Phe105, Ile72, Ser70, Tyr76, 

Tyr78, Asn120, Leu118 

Phe115, Val73, Phe77, Thr119, Glu116, 

Ser74 

K78T Melanin Glu116, Phe115, Thr78, Ser74, Phe105, 
Tyr76, Phe104, Lys97, Phe80, Lys117, 

Thr121, Leu118, Met100 

Phe77, Lys81, Asn120, Thr119, Val73 

K78T Parecoxib Lys97, Tyr76, Ile72, Phe105, Met100, 
Phe115, Lys117 

Thr78, Thr119, Asn120, Glu116, Phe77, 
Val73, Ser74, Phe75 

K78T Rofecoxib Leu118, Lys81, Lys97, Phe115, Arg112, 

Phe105, Tyr76, Ile72, Phe75, Thr78, 
Lys117, Tyr121 

Phe77, Val73, Asn120, Thr119, Ser74, 

Glu116 

 

 
Figure 6. Wild-type interaction of IFN-γ with high docking score compounds. 
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Melanin showed an enhanced binding affinity in the mutant forms (-7.7 kcal/mol) 

compared to the IFN-γ (-7.2 kcal/mol), with key involvement of residues Arg112, 

Phe105, Phe77, and Glu116 (Table 5). These interactions included Pi-Pi stacking and 

hydrogen bonds, suggesting Melanin may bind more effectively to mutant IFN-γ than 

the native protein. Parecoxib and Rofecoxib exhibited comparatively lower binding 

affinities. Parecoxib had a binding score of -6.9 kcal/mol with the native form, which 

slightly improved to -7.8 kcal/mol in the K78T and Y76F mutants. Key interactions 

included hydrogen bonding and Pi-alkyl interactions with Phe115, Lys117, and Met100. 

Similarly, Rofecoxib showed a binding affinity of -6.9 kcal/mol with the native IFN-γ, 

which decreased slightly in the mutant proteins (-6.5 kcal/mol), though core interactions 

with residues such as Tyr76, Arg112, Val73, and Phe105 remained conserved (Table 5). 

Overall, the analysis revealed that Laminin and Melanin maintain strong and consistent 

interactions with both native and mutant IFN-γ proteins, indicating their potential as 

stable therapeutic binders. Meanwhile, FUL, Parecoxib, and Rofecoxib demonstrated 

variable interaction profiles and reduced binding strengths. Across all docking studies, 

critical interacting residues consistently included Phe115, Glu116, Phe105, Val73, 

Ser74, and Phe77, which appear to play central roles in ligand stabilization (Table 5). 

These findings suggest that specific mutations in IFN-γ do not drastically alter its 

binding pocket, allowing certain ligands to retain their efficacy. The ligands analyzed in 

this study laminin, tamoxifen, fulvestrant (FUL), melanin, parecoxib, and Rofecoxib 

show promising potential in the treatment of IFN-γ-related disorders. IFN-γ is a crucial 

cytokine involved in immune system regulation, primarily responsible for macrophage 

activation, antigen presentation, and the coordination of adaptive immune responses. 

Dysregulation or mutations in the IFN-γ gene are associated with several immune-

related disorders, such as autoimmune diseases, chronic inflammation, and Mendelian 

susceptibility to mycobacterial diseases (MSMD). The molecular docking results 

demonstrated strong binding affinities of laminin and melanin, with both wild-type and 

mutant IFN-γ proteins. These interactions suggest that these ligands could help stabilize 

the mutated protein, restore its normal function, or modulate its activity to balance 

immune responses. 

These compounds also play an essential role in future structure-based drug 

discovery. The favorable interactions of ligands such as laminin and melanin with 

critical amino acid residues (Phe115, Glu116, Phe105, and Val73) across all IFN-γ 

variants indicate their potential as lead molecules. Their consistent binding in both wild-

type and mutant forms highlights their capacity to function as broad-spectrum 

therapeutic agents, capable of targeting a range of IFN-γ-related dysfunctions. 

Moreover, tamoxifen and fulvestrant are estrogen receptor modulators, and anti-

inflammatory drugs like parecoxib and rofecoxib, may offer repurposing opportunities 

for immunomodulatory treatment, potentially enhancing the efficacy of therapies 

targeting chronic inflammation and immune imbalance. Despite these promising 

findings, the study has several limitations. First, the analysis is purely computational; 

hence, the predicted interactions require experimental validation through in vitro assays, 

animal studies, and clinical trials to confirm biological relevance, safety, and 

effectiveness. Second, the study only examined Y37C, K78T, and Y76F, while real-

world patient populations may present with more diverse and complex mutations. 

Additionally, the primary pharmacological roles of tamoxifen, fulvestrant, and other 

ligands might pose challenges due to off-target effects or toxicities if repurposed 

without structural optimization. However, this study opens possibilities for drug 
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repurposing, using clinically approved compounds, and supports rational drug design. It 

also advances precision medicine by tailoring treatments to genetic profiles, enhancing 

therapeutic outcomes. However, further validation through experimental studies is 

needed to fully assess the biological significance of these predictions. 

Interferon-gamma (IFN-γ) is a critical regulator of tumor progression and immune-

mediated tumor suppression. It is predominantly expressed by antigen-activated T cells, 

natural killer (NK) cells, natural killer T (NKT) cells, and dendritic cells. The term 

"interferon" (IFN) was first introduced in 1957 following the discovery of a factor 

capable of inhibiting influenza virus replication in murine models. (1) This discovery 

led to the identification of a novel family of cytokines known as interferons (IFNs), 

which are categorized into three major types: Type I (IFN-α), Type II (represented 

solely by IFN-γ), and Type III (IFN-λ), comprising IFN-λ1, IFN-λ2, and IFN-λ3 

formerly designated as IL-28A, IL-28B, and IL-29. (2) Type I IFN genes are conserved 

across all vertebrate species. Among them, 13 IFN-α genes encode 12 structurally 

identical IFN-α protein isoforms. In amphibians, IFN genes exhibit structural diversity, 

as they may exist either as intronless sequences or contain introns, reflecting 

evolutionary variability in gene organization. (3-5). A distinctive feature of IFN-γ is its 

conserved C-terminal tail, which is maintained across a wide range of species, including 

fish, amphibians, birds and mammals. This conserved region is enriched with LYS and 

ARG residues, which are crucial for the protein integrity (8). Furthermore, IFN-γ 

mutations also disrupt receptor interactions, resulting in immunodeficiency. In cancer, 

IFN-γ mutations can either suppress tumor growth or contribute to chronic 

inflammation that fosters cancer progression. Understanding these genetic alterations is 

crucial for developing targeted therapies for infectious diseases, autoimmune disorders, 

and cancer. 

Genome-wide association studies (GWAS) have revealed multiple IFN-γ 

polymorphisms associated with altered immune responses. These genetic variations can 

enhance susceptibility to a range of infectious diseases, autoimmune disorders, and 

inflammatory conditions by affecting the expression and function of the IFN-γ gene (9). 

Moreover, data from the Catalogue of Somatic Mutations in Cancer (COSMIC) reveals 

that 49,967 unique samples were analysed, 243 exhibited mutations in the IFN-γ gene. 

These mutations can affect IFN-γ production, receptor binding, and downstream 

signaling, ultimately disrupting immune regulation. Notably, the rs1861494 SNP has 

been associated with leprosy, asthma, and non-Hodgkin lymphoma, while the 

rs2069718 SNP has been linked to severe cases of COVID-19, suggesting its potential 

role in disease severity. Additionally, the rs2430561 SNP has been implicated in 

susceptibility to tuberculosis, underscoring its importance in immune response 

regulation (10).  Loss-of-function mutations in the IFN-γ gene impair the host's 

immunity to defend against tuberculosis and Bacterial infections, increasing the risk of 

Mendelian susceptibility to mycobacterial disease (MSMD). Gain-of-function mutations 

lead to excessive IFN-γ production, which can induce chronic inflammation associated 

with lupus and rheumatoid arthritis. 

The IFN-γ gene is located on human loci on 12q14.1 and spans roughly 9.6 

kilobases, encompassing 4 exons and 3 introns. It encodes IFN-γ gene lies between base 

pairs 57,700,000 and 67,300,000 and is tightly regulated by promoter and untranslated 

regions (UTRs), which contain binding sites for key transcription factors such as 

STAT1, NF-κB, and IRF-1. These regulatory elements modulate IFN-γ expression in 

response to immune stimuli, including infections and inflammatory signals. The IFN-γ 
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protein is initially synthesized as a monomer consisting of 146 amino acids, but 

following post-translational modifications, it forms a biologically active homodimer 

with 166 amino acids (6). Structurally, IFN-γ belongs to the type II IFN family and 

features a helical bundle composed of six α-helices (A–F), which are essential for 

binding to its receptor complex (IFNGR1 and IFNGR2) and initiating downstream 

immune signaling. The structural integrity and regulated expression of IFN-γ are 

fundamental to its role in orchestrating effective immune responses, and disruptions in 

its gene or protein structure can lead to immune-related disorders (7). This study focuses 

on the computational analysis of missense variants in the human IFN-γ gene that may 

disrupt protein function and contribute to immune-related disorders. By predicting the 

functional and structural effects of these variants, including secondary structure and 

solvent accessibility using SOPMA and NetSurfP, the research aims to uncover 

potentially damaging mutations. The outcomes are expected to provide valuable insights 

into the role of IFN-γ gene variations in infectious diseases, autoimmune conditions, 

and cancer, paving the method for the development of targeted therapeutic approaches. 

Our findings showed that 1,891 SNPs within the IFN-γ gene by the SNPnexus 

algorithm and G161R (rs769209772), R152Q (rs377736305), R130C (rs755519988), 

K78T (rs761801101), Y76F (rs867244009), I72T (rs564666653), I72N (rs564666653), 

V45E (rs1009245499), M1L (rs1304053808), D114Y (rs1178805738), Y37C 

(rs1477303678), and A164S (rs369578383) were predicted to be highly deleterious. 

Additionally, PROVEAN analysis identified 10 nsSNPs in the human IFN-γ gene as 

deleterious, whereas M1L (-1.921) and A164S (-0.856) were predicted to be neutral. 

Furthermore, I72T, R130C, and Y37C exhibited the most damaging effects, with 

PROVEAN scores of -6.410, -6.301, and -6.158, respectively.  ConDEL uses a 

consensus weighted scoring approach, classified 9 nsSNPs as deleterious and G161R, 

M1L, and A164S as neutral. According to PPh2, 11 nsSNPs were predicted to probably 

damage the IFN-γ protein. ConDEL classified G161R, M1L, and A164S as neutral, 

while SNP and GO also predicted G161R, M1L, D114Y, and A164S as neutral variants. 

P-Mut identified G161R, R152Q, K78T, D114Y, Y37C, and A164S as false positives. 

PhD-SNP categorized four missense variants as neutral, whereas Meta-SNP predicted 

five nsSNPs as having damaging effects. Additionally, I-Mutant analysis revealed that 

K78T, Y76F, and Y37C significantly reduced protein stability. SOPMA analysis 

showed that IFN-γ is predominantly α-helical (66.27%), with minor contributions from 

extended strands (5.42%), beta turns (1.20%), and random coils (27.11%), indicating a 

stable yet moderately flexible structure. This helical dominance supports its structural 

integrity in immune signaling. NetSurfP analysis revealed high disorder in G161R 

(99%), R152Q (98%), M1L (97%), and A164S (99%), while Y37C showed moderate 

disorder (29%), and V45E had a solvent accessibility of 55%. All wild-type residues 

were buried, suggesting a structural impact upon mutation. 

The 3D model generated by AlphaFold showed good quality, with 95.5% of residues 

in favored regions and a QMEAN4 score of -1.87. Mutants K78T, Y37C, and Y76F 

exhibited elevated RMSD values (0.55–0.61), demanding further docking analysis. 

Molecular docking studies revealed that Laminin exhibited the strongest binding affinity 

to both wild-type and mutant forms of IFN-γ, with a binding energy of -8.8 kcal/mol for 

the wild-type and similar affinities for the mutants (Y37C, K78T, Y76F). Melanin also 

showed enhanced binding to the mutant forms compared to the wild-type, suggesting its 

potential to bind more effectively in the presence of mutations. Tamoxifen and 

Fulvestrant displayed moderate binding affinities, with variable interaction profiles in 
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the mutant forms, while Parecoxib and Rofecoxib demonstrated lower binding 

strengths.These findings highlight Laminin and Melanin as promising candidates for 

stabilizing IFN-γ, potentially modulating immune responses in disorders related to IFN-

γ dysfunction. The consistency of interactions with key residues (Phe115, Glu116, 

Phe105, and Val73) across wild-type and mutant proteins underscores their therapeutic 

potential. However, the results require experimental validation, and repurposing 

compounds like Tamoxifen and Fulvestrant may need structural optimization to reduce 

off-target effects and enhance their efficacy. 

These findings offer valuable insights for drug discovery, particularly in targeting 

IFN-γ-related immune disorders. The identification of Laminin and Melanin as strong 

binders to both wild-type and mutant IFN-γ proteins suggests their potential as 

therapeutic agents for stabilizing the protein or modulating its activity. This can be 

particularly beneficial in conditions where IFN-γ dysfunction is involved, such as 

autoimmune diseases or chronic inflammation. Additionally, the fact that these ligands 

demonstrate consistent binding across various mutations indicates their broad-spectrum 

potential, which could be crucial for treating genetically diverse patient populations 

with IFN-γ-related disorders. The novelty of these findings lies in their application to 

mutant forms of IFN-γ, an area that has not been extensively explored in prior drug 

discovery studies. While IFN-γ role in immune regulation is well-established, targeting 

its mutant forms with specific ligands opens new avenues for precision medicine. 

Furthermore, repurposing existing compounds like Tamoxifen and Fulvestrant for IFN-

γ-related dysfunction is a novel approach that could expedite drug development by 

utilizing already-approved drugs for new therapeutic indications. This research thus 

paves the way for further experimental validation and optimizes the potential for 

therapeutic intervention in IFN-γ-associated diseases. 

Conclusion 

The study provides significant insights into the genetic and structural implications of 

missense mutations in the IFN-γ gene, with implications for immune-related disorders, 

cancer, and infectious diseases. Through computational analysis, 1,891 SNPs within the 

IFN-γ gene were evaluated, identifying several highly deleterious variants, including 

G161R, R152Q, R130C, K78T, Y76F, I72T, and others, which were predicted to 

disrupt protein function and stability. The analysis highlighted that I72T, R130C, and 

Y37C, exhibited the most damaging effects, potentially compromising immune 

signaling pathways essential for regulating immune responses. The molecular modeling 

and docking studies further emphasized the critical role of IFN-γ's structural integrity, 

with identified ligands such as Laminin and Melanin showing strong binding affinities 

to both wild-type and mutant IFN-γ proteins, suggesting their potential as therapeutic 

agents for stabilizing or modulating the protein’s activity. Laminin and Melanin 

represent promising candidates for future drug development due to their ability to 

interact with key residues on both wild-type and mutant IFN-γ proteins, potentially 

offering a broad-spectrum therapeutic approach. Additionally, Tamoxifen and 

Fulvestrant could accelerate the clinical application of these compounds for IFN-γ-

related dysfunctions, though further structural optimization may be needed. By targeting 

the structural and functional consequences of specific genetic variants, this research 

opens new avenues for precision medicine in treating IFN-γ-related diseases. The results 

underline the potential of integrating computational drug discovery approaches with 
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existing pharmaceutical compounds, facilitating the rapid identification and validation 

of therapeutic candidates for a range of immune-mediated diseases. Future experimental 

validation of these findings will be essential for confirming their therapeutic potential 

and optimizing treatment strategies for individuals with IFN-γ-related immune 

disorders. 
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