BIOACTIVE COMPOUNDS IN CURCUMA LONGA EXTRACTS: POTENTIAL INHIBITORS OF MULTIDRUG-RESISTANT KLEBSIELLA SPP.

Authors

  • OLUMIDE OLUYELE Department of Microbiology, Adekunle Ajasin University, Ondo State, Nigeria.
  • GLADYS EGUNJOBI Department of Microbiology, Adekunle Ajasin University, Ondo State, Nigeria.
  • DOREEN OWAGBEMI Department of Microbiology, Adekunle Ajasin University, Ondo State, Nigeria.

DOI:

https://doi.org/10.55197/qjmhs.v4i3.156

Keywords:

Klebsiella Pneumoniae, Klebsiella Oxytoca, multidrug-resistance, Curcuma Longa, GC-MS, phytochemicals

Abstract

This study evaluated the inhibitory effects of turmeric (Curcuma longa) extracts against selected multidrug-resistant Klebsiella spp. Freshly ground C. longa was extracted using the maceration method, and the susceptibility of the organisms to the extract was tested using the agar well diffusion technique. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the bioactive compounds in the extract. Molecular docking was performed using the Glide module of Maestro Schrödinger to predict binding affinities and interaction modes of C. longa phytochemicals with SHV-1 (beta-lactamase-1) of K. pneumoniae and NpsA (phosphoribosyltransferase) of K. oxytoca. The inhibition zones of C. longa extract against the antibiotic-resistant Klebsiella spp. ranged from 17±0.88 mm to 18.67±0.88 mm. The minimum inhibitory concentration (MIC) of the extract against the test organisms ranged from 25 mg/ml to 50 mg/ml, while the maximum bactericidal concentration (MBC) was 100 mg/ml. GC-MS analysis identified 31 compounds in the C. longa extract, with the main components being n-Hexadecanoic acid (9.14%), methyl tetradecanoate (7.77%), octadecanamide (7.74%), maltose (7.74%), and phytol (7.45%). Molecular docking analyses identified C. longa phytochemicals with strong inhibitory potential against SHV-1 in Klebsiella pneumoniae and NpsA in K. oxytoca. 1,2-Benzenedicarboxylic acid, diheptyl ester showed the highest binding scores (−8.641 and −9.765 kcal/mol), while other compounds exhibited stable interactions and favorable pharmacokinetic profiles, outperforming standard antibiotics. These findings suggest that C. longa extract could be a promising alternative for combating infections caused by antibiotic-resistant Klebsiella spp.

References

[1] Akbar, A., Kuanar, A., Joshi, R.K., Sandeep, I.S., Mohanty, S. (2016): Development of prediction model and experimental validation in predicting the curcumin content of turmeric (Curcuma longa L.). – Frontiers in Plant Science 7: 17p.

[2] Amalraj, A., Pius, A., Gopi, S. (2017): Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-A review. – Journal of Traditional Chinese Medicine Science 7: 205-233.

[3] Anekwe, I.I., Chikwendu, C.I., Amadi, E.S., Nwogwugwu, N.U., Ihenetu, F.C. (2023): Gas chromatography-mass spectrometry analysis of bioactive compounds of Curcuma longa leaves extract. – International Journal of Biological and Chemical Sciences 17(3): 1199-1207.

[4] Ann, A.T., Hintz, T., Matthews, K.K., Di, R. (2018): The use of plant antimicrobial compounds for food preservation. – Biomedical Research Institute 12p.

[5] Arivoli, S., Tennyson, T., Divya, S., Rani, S., Marin, G. (2019): GC-MS analysis of bioactive compounds of Curcuma longa Linnaeus (Zingiberaceae) rhizome extract. – Journal of Pharmacognosy and Phytochemistry 8(3): 1239-1244.

[6] Bannuru, R.R., Osani, M.C., Al-Eid, F., Wang, C. (2018): Efficacy of curcumin and Boswellia for knee osteoarthritis: Systematic review and meta-analysis. – Seminars in Arthritis and Rheumatism 48: 416-429.

[7] Bao, H., Dalal, K., Cytryrnbaum, E., Duong, F. (2015): Sequential action of MalE and maltose allows coupling ATP hydrolysis to translocation in the MalFGK2 transporter. – Journal of Biological Chemistry 290(42): 25452-25460.

[8] Bengmark, S., Mesa, M.D., Gil, A. (2009): Plant-derived health: The effects of turmeric and curcuminoids. – Nutrición Hospitalaria 24: 273-281.

[9] Bengoechea, J.A., Pessoa, J.S. (2019): Klebsiella pneumoniae infection biology: Living to counteract host defenses. – FEMS Microbiology Reviews 43(2): 123-144.

[10] Bergogne-Berezin, E. (1995): Nosocomial pathogens: New pathogens, incidence, prevention. – Presse Médicale 24: 89-97.

[11] Chakraborty, P., Ali, S., Kaushik, S., Ray, R., Yadav, R., Singh, D., Bhakat, A. (2011): Curcuma longa-A multicentric clinical verification study. – Indian Journal of Research in Homoeopathy 5(1): 19-27.

[12] Chandrana, H., Baluja, S., Chanda, S.V. (2005): Comparison of antibacterial activities of selected species of Zingiberaceae family and some synthetic compounds. – Turkish Journal of Biology 29: 83-97.

[13] Dong, N., Yang, X., Chan, E.W.C., Zhang, R., Chen, S. (2022): Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. – EBioMedicine 79: 11p.

[14] Guardabassi, L., Schwarz, S., Lloyd, D.H. (2004): Pet animals as reservoirs of antimicrobial-resistant bacteria. – Journal of Antimicrobial Chemotherapy 54(2): 321-332.

[15] Gülen, D., Şafak, B., Erdal, B., Günaydın, B. (2021): Curcumin–meropenem synergy in carbapenem-resistant Klebsiella pneumoniae. – Iranian Journal of Microbiology 13(3): 345-351.

[16] Holt, K.E., Wertheim, H., Zadoks, R.N., Baker, S., Whitehouse, C.A., Dance, D., Jenney, A., Connor, T.R., Hsu, L.Y., Severin, J., Brisse, S. (2015): Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. – Proceedings of the National Academy of Sciences 112(27): E3574-E3581.

[17] Kim, K.J., Yu, H.H., Cha, J.D., Seo, S.J., Choi, N.Y., You, Y.O. (2005): Antibacterial activity of Curcuma longa L. against methicillin-resistant Staphylococcus aureus. – Phytotherapy Research 19: 599-604.

[18] Li, J., Huang, Z.Y., Yu, T., Tao, X.Y., Hu, Y.M., Wang, H.C., Zou, M.X. (2019): Isolation and characterization of a sequence type 25 carbapenem-resistant hypervirulent Klebsiella pneumoniae from the mid-south region of China. – BMC Microbiology 19: 1-10.

[19] Louis, H., Linus, M.N., Israt, A., Innocent, J., Amos, P.I., and Magu, T.O. (2018): Antimicrobial activity of stem, leaf and root plant extract of Sclerocarya birrea and Sterculia setigera against some selected microorganisms. – World Scientific News 92(2): 309-326.

[20] Martin, R.M., Bachman, M.A. (2018): Colonization, infection, and the accessory genome of Klebsiella pneumoniae. – Frontiers in Cellular and Infection Microbiology 8: 15p.

[21] Meng, F., Zhou, Y., Ren, D., Wang, R. (2018): Turmeric: A review of its chemical composition, quality control, bioactivity, and pharmaceutical application. – In A. M. Grumezescu and A. M. Holban (Eds.), Natural and Artificial Flavoring Agents and Food Dyes, Elsevier 2p.

[22] Momoh, J.O., Bankole, Y.O., Manuwa, A.A. (2022): Phytochemical screening, atomic absorption spectroscopy, GC-MS and antibacterial activities of turmeric (Curcuma longa L.) rhizome extracts. – Journal of Advances in Microbiology 22(9): 116-131.

[23] Müller-Schulte, E., Tuo, M.N., Akoua-Koffi, C., Schaumburg, F., Becker, S.L. (2020): High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d'Ivoire. – International Journal of Infectious Diseases 91: 207-209.

[24] Ogunjobi, S.A., Adeniyi, T.A., Adeonipekun, P.A., Omotayo, E.A. (2014): Investigating the phytochemicals and antimicrobial properties of three sedge (Cyperaceae) species. – Notulae Scientia Biologicae 6(3): 276-281.

[25] Oluyele, O., Akinyueke, E. (2025): Therapeutic Potentials of Persea americana Peptide: In silico and Experimental studies. – Plant Biotechnology Persa 7(3): 1p.

[26] Oluyele, O., Oladunmoye, M.K. (2017): Susceptibility patterns of Staphylococcus aureus isolated from wound swabs of extracts of Vernonia amygdalina. – Journal of Advances in Medical and Pharmaceutical Sciences 13(4): 1-11.

[27] Oluyele, O., Omoboyowa, A.D., Aderogba, A.E., Osei, K.A. (2025): Piper guineense (Schum. and Thonn.) inhibits lanosterol-14α-demethylase in multidrug-resistant Candida species: In vitro and in silico studies. – Advances in Medical, Pharmaceutical and Dental Research 5(1): 10-20.

[28] Pejin, B., Kojic, V., Bogdanovic, G. (2014): An insight into the cytotoxicity of phytol at in vitro conditions. – Natural Product Research 28(12): 846-849.

[29] Prado, T., Pereira, W.C., Silva, D.M., Seki, L.M., Carvalho, A.P.D.A., Asensi, M.D. (2008): Detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. – Letters in Applied Microbiology 46: 136-141.

[30] Rattanasuk, S., Wechgama, K., Chumroenphat, T., Chaiyachet, O.A., Charoensopharat, K. (2023): Potential antibacterial activity of ethanolic Curcuma longa L. rhizome extract against antibiotic-resistant bacteria. – Pakistan Journal of Biological Sciences 26(3): 119-123.

[31] Ravi, L., Kannabiran, K. (2017): Cytotoxic potential of n-hexadecanoic acid extracted from Kigelia pinnata leaves. – Asian Journal of Cell Biology 12: 20-27.

[32] Rubin, J.E., Pitout, J.D. (2014): Extended-spectrum β-lactamase, carbapenemase and AmpC-producing Enterobacteriaceae in companion animals. – Veterinary Microbiology 170(1-2): 10-18.

[33] Stojowska-Swędrzyńska, K., Krawczyk, B. (2016): A new assay for the simultaneous identification and differentiation of Klebsiella oxytoca strains. – Applied Microbiology and Biotechnology 100: 10115-10123.

[34] Urmila, J., Jandaik, S., Mehta, J., Mohan, M. (2016): A synergistic and efflux pump inhibitory activity of plant extract and antibiotics on Staphylococcus aureus strains. – Asian Journal of Pharmaceutical and Clinical Research 9: 277-282.

[35] Yang, Q.Q., Cheng, L.Z., Zhang, T., Yaron, S., Jiang, H.X., Sui, Z.Q., Corke, H. (2020): Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). – Industrial Crops and Products 152: 8p.

Downloads

Published

2025-06-28

Issue

Section

Articles

How to Cite

BIOACTIVE COMPOUNDS IN CURCUMA LONGA EXTRACTS: POTENTIAL INHIBITORS OF MULTIDRUG-RESISTANT KLEBSIELLA SPP. (2025). Quantum Journal of Medical and Health Sciences, 4(3), 69-83. https://doi.org/10.55197/qjmhs.v4i3.156